Stochastic Flows and Stochastic Differential Equations

Stochastic Flows and Stochastic Differential Equations
Author :
Publisher : Cambridge University Press
Total Pages : 364
Release :
ISBN-10 : 0521599253
ISBN-13 : 9780521599252
Rating : 4/5 (53 Downloads)

Book Synopsis Stochastic Flows and Stochastic Differential Equations by : Hiroshi Kunita

Download or read book Stochastic Flows and Stochastic Differential Equations written by Hiroshi Kunita and published by Cambridge University Press. This book was released on 1990 with total page 364 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main purpose of this book is to give a systematic treatment of the theory of stochastic differential equations and stochastic flow of diffeomorphisms, and through the former to study the properties of stochastic flows.The classical theory was initiated by K. Itô and since then has been much developed. Professor Kunita's approach here is to regard the stochastic differential equation as a dynamical system driven by a random vector field, including thereby Itô's theory as a special case. The book can be used with advanced courses on probability theory or for self-study.

Stochastic Flows and Jump-Diffusions

Stochastic Flows and Jump-Diffusions
Author :
Publisher : Springer
Total Pages : 366
Release :
ISBN-10 : 9789811338014
ISBN-13 : 9811338019
Rating : 4/5 (14 Downloads)

Book Synopsis Stochastic Flows and Jump-Diffusions by : Hiroshi Kunita

Download or read book Stochastic Flows and Jump-Diffusions written by Hiroshi Kunita and published by Springer. This book was released on 2019-03-26 with total page 366 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph presents a modern treatment of (1) stochastic differential equations and (2) diffusion and jump-diffusion processes. The simultaneous treatment of diffusion processes and jump processes in this book is unique: Each chapter starts from continuous processes and then proceeds to processes with jumps.In the first part of the book, it is shown that solutions of stochastic differential equations define stochastic flows of diffeomorphisms. Then, the relation between stochastic flows and heat equations is discussed. The latter part investigates fundamental solutions of these heat equations (heat kernels) through the study of the Malliavin calculus. The author obtains smooth densities for transition functions of various types of diffusions and jump-diffusions and shows that these density functions are fundamental solutions for various types of heat equations and backward heat equations. Thus, in this book fundamental solutions for heat equations and backward heat equations are constructed independently of the theory of partial differential equations.Researchers and graduate student in probability theory will find this book very useful.

An Introduction to the Geometry of Stochastic Flows

An Introduction to the Geometry of Stochastic Flows
Author :
Publisher : World Scientific
Total Pages : 152
Release :
ISBN-10 : 9781860944819
ISBN-13 : 1860944817
Rating : 4/5 (19 Downloads)

Book Synopsis An Introduction to the Geometry of Stochastic Flows by : Fabrice Baudoin

Download or read book An Introduction to the Geometry of Stochastic Flows written by Fabrice Baudoin and published by World Scientific. This book was released on 2004 with total page 152 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book aims to provide a self-contained introduction to the local geometry of the stochastic flows associated with stochastic differential equations. It stresses the view that the local geometry of any stochastic flow is determined very precisely and explicitly by a universal formula referred to as the Chen-Strichartz formula. The natural geometry associated with the Chen-Strichartz formula is the sub-Riemannian geometry whose main tools are introduced throughout the text. By using the connection between stochastic flows and partial differential equations, we apply this point of view of the study of hypoelliptic operators written in Hormander's form.

On the Geometry of Diffusion Operators and Stochastic Flows

On the Geometry of Diffusion Operators and Stochastic Flows
Author :
Publisher : Springer
Total Pages : 121
Release :
ISBN-10 : 9783540470229
ISBN-13 : 3540470220
Rating : 4/5 (29 Downloads)

Book Synopsis On the Geometry of Diffusion Operators and Stochastic Flows by : K.D. Elworthy

Download or read book On the Geometry of Diffusion Operators and Stochastic Flows written by K.D. Elworthy and published by Springer. This book was released on 2007-01-05 with total page 121 pages. Available in PDF, EPUB and Kindle. Book excerpt: Stochastic differential equations, and Hoermander form representations of diffusion operators, can determine a linear connection associated to the underlying (sub)-Riemannian structure. This is systematically described, together with its invariants, and then exploited to discuss qualitative properties of stochastic flows, and analysis on path spaces of compact manifolds with diffusion measures. This should be useful to stochastic analysts, especially those with interests in stochastic flows, infinite dimensional analysis, or geometric analysis, and also to researchers in sub-Riemannian geometry. A basic background in differential geometry is assumed, but the construction of the connections is very direct and itself gives an intuitive and concrete introduction. Knowledge of stochastic analysis is also assumed for later chapters.

Diffusion Processes and Related Problems in Analysis, Volume II

Diffusion Processes and Related Problems in Analysis, Volume II
Author :
Publisher : Springer Science & Business Media
Total Pages : 344
Release :
ISBN-10 : 9781461203896
ISBN-13 : 1461203899
Rating : 4/5 (96 Downloads)

Book Synopsis Diffusion Processes and Related Problems in Analysis, Volume II by : V. Wihstutz

Download or read book Diffusion Processes and Related Problems in Analysis, Volume II written by V. Wihstutz and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: During the weekend of March 16-18, 1990 the University of North Carolina at Charlotte hosted a conference on the subject of stochastic flows, as part of a Special Activity Month in the Department of Mathematics. This conference was supported jointly by a National Science Foundation grant and by the University of North Carolina at Charlotte. Originally conceived as a regional conference for researchers in the Southeastern United States, the conference eventually drew participation from both coasts of the U. S. and from abroad. This broad-based par ticipation reflects a growing interest in the viewpoint of stochastic flows, particularly in probability theory and more generally in mathematics as a whole. While the theory of deterministic flows can be considered classical, the stochastic counterpart has only been developed in the past decade, through the efforts of Harris, Kunita, Elworthy, Baxendale and others. Much of this work was done in close connection with the theory of diffusion processes, where dynamical systems implicitly enter probability theory by means of stochastic differential equations. In this regard, the Charlotte conference served as a natural outgrowth of the Conference on Diffusion Processes, held at Northwestern University, Evanston Illinois in October 1989, the proceedings of which has now been published as Volume I of the current series. Due to this natural flow of ideas, and with the assistance and support of the Editorial Board, it was decided to organize the present two-volume effort.

New Trends in Stochastic Analysis and Related Topics

New Trends in Stochastic Analysis and Related Topics
Author :
Publisher : World Scientific
Total Pages : 458
Release :
ISBN-10 : 9789814360913
ISBN-13 : 9814360910
Rating : 4/5 (13 Downloads)

Book Synopsis New Trends in Stochastic Analysis and Related Topics by : Huaizhong Zhao

Download or read book New Trends in Stochastic Analysis and Related Topics written by Huaizhong Zhao and published by World Scientific. This book was released on 2012 with total page 458 pages. Available in PDF, EPUB and Kindle. Book excerpt: The volume is dedicated to Professor David Elworthy to celebrate his fundamental contribution and exceptional influence on stochastic analysis and related fields. Stochastic analysis has been profoundly developed as a vital fundamental research area in mathematics in recent decades. It has been discovered to have intrinsic connections with many other areas of mathematics such as partial differential equations, functional analysis, topology, differential geometry, dynamical systems, etc. Mathematicians developed many mathematical tools in stochastic analysis to understand and model random phenomena in physics, biology, finance, fluid, environment science, etc. This volume contains 12 comprehensive review/new articles written by world leading researchers (by invitation) and their collaborators. It covers stochastic analysis on manifolds, rough paths, Dirichlet forms, stochastic partial differential equations, stochastic dynamical systems, infinite dimensional analysis, stochastic flows, quantum stochastic analysis and stochastic Hamilton Jacobi theory. Articles contain cutting edge research methodology, results and ideas in relevant fields. They are of interest to research mathematicians and postgraduate students in stochastic analysis, probability, partial differential equations, dynamical systems, mathematical physics, as well as to physicists, financial mathematicians, engineers, etc.

Stochastic Differential Equations on Manifolds

Stochastic Differential Equations on Manifolds
Author :
Publisher : Cambridge University Press
Total Pages : 347
Release :
ISBN-10 : 9780521287678
ISBN-13 : 0521287677
Rating : 4/5 (78 Downloads)

Book Synopsis Stochastic Differential Equations on Manifolds by : K. D. Elworthy

Download or read book Stochastic Differential Equations on Manifolds written by K. D. Elworthy and published by Cambridge University Press. This book was released on 1982 with total page 347 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aims of this book, originally published in 1982, are to give an understanding of the basic ideas concerning stochastic differential equations on manifolds and their solution flows, to examine the properties of Brownian motion on Riemannian manifolds when it is constructed using the stochiastic development and to indicate some of the uses of the theory. The author has included two appendices which summarise the manifold theory and differential geometry needed to follow the development; coordinate-free notation is used throughout. Moreover, the stochiastic integrals used are those which can be obtained from limits of the Riemann sums, thereby avoiding much of the technicalities of the general theory of processes and allowing the reader to get a quick grasp of the fundamental ideas of stochastic integration as they are needed for a variety of applications.