Stochastic Flows and Jump-diffusions

Stochastic Flows and Jump-diffusions
Author :
Publisher :
Total Pages : 352
Release :
ISBN-10 : 9811338027
ISBN-13 : 9789811338021
Rating : 4/5 (27 Downloads)

Book Synopsis Stochastic Flows and Jump-diffusions by : H. Kunita

Download or read book Stochastic Flows and Jump-diffusions written by H. Kunita and published by . This book was released on 2019 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph presents a modern treatment of (1) stochastic differential equations and (2) diffusion and jump-diffusion processes. The simultaneous treatment of diffusion processes and jump processes in this book is unique: Each chapter starts from continuous processes and then proceeds to processes with jumps. In the first part of the book, it is shown that solutions of stochastic differential equations define stochastic flows of diffeomorphisms. Then, the relation between stochastic flows and heat equations is discussed. The latter part investigates fundamental solutions of these heat equations (heat kernels) through the study of the Malliavin calculus. The author obtains smooth densities for transition functions of various types of diffusions and jump-diffusions and shows that these density functions are fundamental solutions for various types of heat equations and backward heat equations. Thus, in this book fundamental solutions for heat equations and backward heat equations are constructed independently of the theory of partial differential equations. Researchers and graduate student in probability theory will find this book very useful.

Stochastic Flows and Jump-Diffusions

Stochastic Flows and Jump-Diffusions
Author :
Publisher : Springer
Total Pages : 366
Release :
ISBN-10 : 9789811338014
ISBN-13 : 9811338019
Rating : 4/5 (14 Downloads)

Book Synopsis Stochastic Flows and Jump-Diffusions by : Hiroshi Kunita

Download or read book Stochastic Flows and Jump-Diffusions written by Hiroshi Kunita and published by Springer. This book was released on 2019-03-26 with total page 366 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph presents a modern treatment of (1) stochastic differential equations and (2) diffusion and jump-diffusion processes. The simultaneous treatment of diffusion processes and jump processes in this book is unique: Each chapter starts from continuous processes and then proceeds to processes with jumps.In the first part of the book, it is shown that solutions of stochastic differential equations define stochastic flows of diffeomorphisms. Then, the relation between stochastic flows and heat equations is discussed. The latter part investigates fundamental solutions of these heat equations (heat kernels) through the study of the Malliavin calculus. The author obtains smooth densities for transition functions of various types of diffusions and jump-diffusions and shows that these density functions are fundamental solutions for various types of heat equations and backward heat equations. Thus, in this book fundamental solutions for heat equations and backward heat equations are constructed independently of the theory of partial differential equations.Researchers and graduate student in probability theory will find this book very useful.

Stochastic Flows and Jump-Diffusions

Stochastic Flows and Jump-Diffusions
Author :
Publisher : Springer
Total Pages : 352
Release :
ISBN-10 : 9811338000
ISBN-13 : 9789811338007
Rating : 4/5 (00 Downloads)

Book Synopsis Stochastic Flows and Jump-Diffusions by : Hiroshi Kunita

Download or read book Stochastic Flows and Jump-Diffusions written by Hiroshi Kunita and published by Springer. This book was released on 2019-05-06 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph presents a modern treatment of (1) stochastic differential equations and (2) diffusion and jump-diffusion processes. The simultaneous treatment of diffusion processes and jump processes in this book is unique: Each chapter starts from continuous processes and then proceeds to processes with jumps.In the first part of the book, it is shown that solutions of stochastic differential equations define stochastic flows of diffeomorphisms. Then, the relation between stochastic flows and heat equations is discussed. The latter part investigates fundamental solutions of these heat equations (heat kernels) through the study of the Malliavin calculus. The author obtains smooth densities for transition functions of various types of diffusions and jump-diffusions and shows that these density functions are fundamental solutions for various types of heat equations and backward heat equations. Thus, in this book fundamental solutions for heat equations and backward heat equations are constructed independently of the theory of partial differential equations.Researchers and graduate student in probability theory will find this book very useful.

Applied Stochastic Control of Jump Diffusions

Applied Stochastic Control of Jump Diffusions
Author :
Publisher : Springer Science & Business Media
Total Pages : 263
Release :
ISBN-10 : 9783540698265
ISBN-13 : 3540698264
Rating : 4/5 (65 Downloads)

Book Synopsis Applied Stochastic Control of Jump Diffusions by : Bernt Øksendal

Download or read book Applied Stochastic Control of Jump Diffusions written by Bernt Øksendal and published by Springer Science & Business Media. This book was released on 2007-04-26 with total page 263 pages. Available in PDF, EPUB and Kindle. Book excerpt: Here is a rigorous introduction to the most important and useful solution methods of various types of stochastic control problems for jump diffusions and its applications. Discussion includes the dynamic programming method and the maximum principle method, and their relationship. The text emphasises real-world applications, primarily in finance. Results are illustrated by examples, with end-of-chapter exercises including complete solutions. The 2nd edition adds a chapter on optimal control of stochastic partial differential equations driven by Lévy processes, and a new section on optimal stopping with delayed information. Basic knowledge of stochastic analysis, measure theory and partial differential equations is assumed.

Stochastic Flows and Stochastic Differential Equations

Stochastic Flows and Stochastic Differential Equations
Author :
Publisher : Cambridge University Press
Total Pages : 364
Release :
ISBN-10 : 0521599253
ISBN-13 : 9780521599252
Rating : 4/5 (53 Downloads)

Book Synopsis Stochastic Flows and Stochastic Differential Equations by : Hiroshi Kunita

Download or read book Stochastic Flows and Stochastic Differential Equations written by Hiroshi Kunita and published by Cambridge University Press. This book was released on 1990 with total page 364 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main purpose of this book is to give a systematic treatment of the theory of stochastic differential equations and stochastic flow of diffeomorphisms, and through the former to study the properties of stochastic flows.The classical theory was initiated by K. Itô and since then has been much developed. Professor Kunita's approach here is to regard the stochastic differential equation as a dynamical system driven by a random vector field, including thereby Itô's theory as a special case. The book can be used with advanced courses on probability theory or for self-study.

Stochastic Modelling of Reaction–Diffusion Processes

Stochastic Modelling of Reaction–Diffusion Processes
Author :
Publisher : Cambridge University Press
Total Pages : 322
Release :
ISBN-10 : 9781108572996
ISBN-13 : 1108572995
Rating : 4/5 (96 Downloads)

Book Synopsis Stochastic Modelling of Reaction–Diffusion Processes by : Radek Erban

Download or read book Stochastic Modelling of Reaction–Diffusion Processes written by Radek Erban and published by Cambridge University Press. This book was released on 2020-01-30 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: This practical introduction to stochastic reaction-diffusion modelling is based on courses taught at the University of Oxford. The authors discuss the essence of mathematical methods which appear (under different names) in a number of interdisciplinary scientific fields bridging mathematics and computations with biology and chemistry. The book can be used both for self-study and as a supporting text for advanced undergraduate or beginning graduate-level courses in applied mathematics. New mathematical approaches are explained using simple examples of biological models, which range in size from simulations of small biomolecules to groups of animals. The book starts with stochastic modelling of chemical reactions, introducing stochastic simulation algorithms and mathematical methods for analysis of stochastic models. Different stochastic spatio-temporal models are then studied, including models of diffusion and stochastic reaction-diffusion modelling. The methods covered include molecular dynamics, Brownian dynamics, velocity jump processes and compartment-based (lattice-based) models.

Applied Stochastic Processes and Control for Jump-Diffusions

Applied Stochastic Processes and Control for Jump-Diffusions
Author :
Publisher : SIAM
Total Pages : 472
Release :
ISBN-10 : 0898718635
ISBN-13 : 9780898718638
Rating : 4/5 (35 Downloads)

Book Synopsis Applied Stochastic Processes and Control for Jump-Diffusions by : Floyd B. Hanson

Download or read book Applied Stochastic Processes and Control for Jump-Diffusions written by Floyd B. Hanson and published by SIAM. This book was released on 2007-01-01 with total page 472 pages. Available in PDF, EPUB and Kindle. Book excerpt: This self-contained, practical, entry-level text integrates the basic principles of applied mathematics, applied probability, and computational science for a clear presentation of stochastic processes and control for jump diffusions in continuous time. The author covers the important problem of controlling these systems and, through the use of a jump calculus construction, discusses the strong role of discontinuous and nonsmooth properties versus random properties in stochastic systems.