Diffusion Processes and Related Problems in Analysis, Volume II

Diffusion Processes and Related Problems in Analysis, Volume II
Author :
Publisher : Springer Science & Business Media
Total Pages : 344
Release :
ISBN-10 : 9781461203896
ISBN-13 : 1461203899
Rating : 4/5 (96 Downloads)

Book Synopsis Diffusion Processes and Related Problems in Analysis, Volume II by : V. Wihstutz

Download or read book Diffusion Processes and Related Problems in Analysis, Volume II written by V. Wihstutz and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: During the weekend of March 16-18, 1990 the University of North Carolina at Charlotte hosted a conference on the subject of stochastic flows, as part of a Special Activity Month in the Department of Mathematics. This conference was supported jointly by a National Science Foundation grant and by the University of North Carolina at Charlotte. Originally conceived as a regional conference for researchers in the Southeastern United States, the conference eventually drew participation from both coasts of the U. S. and from abroad. This broad-based par ticipation reflects a growing interest in the viewpoint of stochastic flows, particularly in probability theory and more generally in mathematics as a whole. While the theory of deterministic flows can be considered classical, the stochastic counterpart has only been developed in the past decade, through the efforts of Harris, Kunita, Elworthy, Baxendale and others. Much of this work was done in close connection with the theory of diffusion processes, where dynamical systems implicitly enter probability theory by means of stochastic differential equations. In this regard, the Charlotte conference served as a natural outgrowth of the Conference on Diffusion Processes, held at Northwestern University, Evanston Illinois in October 1989, the proceedings of which has now been published as Volume I of the current series. Due to this natural flow of ideas, and with the assistance and support of the Editorial Board, it was decided to organize the present two-volume effort.

Analysis For Diffusion Processes On Riemannian Manifolds

Analysis For Diffusion Processes On Riemannian Manifolds
Author :
Publisher : World Scientific
Total Pages : 392
Release :
ISBN-10 : 9789814452663
ISBN-13 : 9814452661
Rating : 4/5 (63 Downloads)

Book Synopsis Analysis For Diffusion Processes On Riemannian Manifolds by : Feng-yu Wang

Download or read book Analysis For Diffusion Processes On Riemannian Manifolds written by Feng-yu Wang and published by World Scientific. This book was released on 2013-09-23 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: Stochastic analysis on Riemannian manifolds without boundary has been well established. However, the analysis for reflecting diffusion processes and sub-elliptic diffusion processes is far from complete. This book contains recent advances in this direction along with new ideas and efficient arguments, which are crucial for further developments. Many results contained here (for example, the formula of the curvature using derivatives of the semigroup) are new among existing monographs even in the case without boundary.

Analysis for Diffusion Processes on Riemannian Manifolds

Analysis for Diffusion Processes on Riemannian Manifolds
Author :
Publisher : World Scientific
Total Pages : 392
Release :
ISBN-10 : 9789814452656
ISBN-13 : 9814452653
Rating : 4/5 (56 Downloads)

Book Synopsis Analysis for Diffusion Processes on Riemannian Manifolds by : Feng-Yu Wang

Download or read book Analysis for Diffusion Processes on Riemannian Manifolds written by Feng-Yu Wang and published by World Scientific. This book was released on 2014 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: Stochastic analysis on Riemannian manifolds without boundary has been well established. However, the analysis for reflecting diffusion processes and sub-elliptic diffusion processes is far from complete. This book contains recent advances in this direction along with new ideas and efficient arguments, which are crucial for further developments. Many results contained here (for example, the formula of the curvature using derivatives of the semigroup) are new among existing monographs even in the case without boundary.

Stochastic Analysis and Diffusion Processes

Stochastic Analysis and Diffusion Processes
Author :
Publisher : OUP Oxford
Total Pages : 368
Release :
ISBN-10 : 9780191004520
ISBN-13 : 0191004529
Rating : 4/5 (20 Downloads)

Book Synopsis Stochastic Analysis and Diffusion Processes by : Gopinath Kallianpur

Download or read book Stochastic Analysis and Diffusion Processes written by Gopinath Kallianpur and published by OUP Oxford. This book was released on 2014-01-09 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt: Stochastic Analysis and Diffusion Processes presents a simple, mathematical introduction to Stochastic Calculus and its applications. The book builds the basic theory and offers a careful account of important research directions in Stochastic Analysis. The breadth and power of Stochastic Analysis, and probabilistic behavior of diffusion processes are told without compromising on the mathematical details. Starting with the construction of stochastic processes, the book introduces Brownian motion and martingales. The book proceeds to construct stochastic integrals, establish the Itô formula, and discuss its applications. Next, attention is focused on stochastic differential equations (SDEs) which arise in modeling physical phenomena, perturbed by random forces. Diffusion processes are solutions of SDEs and form the main theme of this book. The Stroock-Varadhan martingale problem, the connection between diffusion processes and partial differential equations, Gaussian solutions of SDEs, and Markov processes with jumps are presented in successive chapters. The book culminates with a careful treatment of important research topics such as invariant measures, ergodic behavior, and large deviation principle for diffusions. Examples are given throughout the book to illustrate concepts and results. In addition, exercises are given at the end of each chapter that will help the reader to understand the concepts better. The book is written for graduate students, young researchers and applied scientists who are interested in stochastic processes and their applications. The reader is assumed to be familiar with probability theory at graduate level. The book can be used as a text for a graduate course on Stochastic Analysis.

Random Perturbation Methods with Applications in Science and Engineering

Random Perturbation Methods with Applications in Science and Engineering
Author :
Publisher : Springer Science & Business Media
Total Pages : 500
Release :
ISBN-10 : 9780387224466
ISBN-13 : 0387224467
Rating : 4/5 (66 Downloads)

Book Synopsis Random Perturbation Methods with Applications in Science and Engineering by : Anatoli V. Skorokhod

Download or read book Random Perturbation Methods with Applications in Science and Engineering written by Anatoli V. Skorokhod and published by Springer Science & Business Media. This book was released on 2007-06-21 with total page 500 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book develops methods for describing random dynamical systems, and it illustrats how the methods can be used in a variety of applications. Appeals to researchers and graduate students who require tools to investigate stochastic systems.

Stochastic Analysis and Related Topics VII

Stochastic Analysis and Related Topics VII
Author :
Publisher : Springer Science & Business Media
Total Pages : 256
Release :
ISBN-10 : 9781461201571
ISBN-13 : 1461201578
Rating : 4/5 (71 Downloads)

Book Synopsis Stochastic Analysis and Related Topics VII by : Laurent Decreusefond

Download or read book Stochastic Analysis and Related Topics VII written by Laurent Decreusefond and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: One of the most challenging subjects of stochastic analysis in relation to physics is the analysis of heat kernels on infinite dimensional manifolds. The simplest nontrivial case is that of thepath and loop space on a Lie group. In this volume an up-to-date survey of the topic is given by Leonard Gross, a prominent developer of the theory. Another concise but complete survey of Hausdorff measures on Wiener space and its applications to Malliavin Calculus is given by D. Feyel, one of the most active specialists in this area. Other survey articles deal with short-time asymptotics of diffusion pro cesses with values in infinite dimensional manifolds and large deviations of diffusions with discontinuous drifts. A thorough survey is given of stochas tic integration with respect to the fractional Brownian motion, as well as Stokes' formula for the Brownian sheet, and a new version of the log Sobolev inequality on the Wiener space. Professional mathematicians looking for an overview of the state-of-the art in the above subjects will find this book helpful. In addition, graduate students as well as researchers whose domain requires stochastic analysis will find the original results of interest for their own research. The organizers acknowledge gratefully the financial help ofthe University of Oslo, and the invaluable aid of Professor Bernt 0ksendal and l'Ecole Nationale Superieure des Telecommunications.

Stochastic Analysis and Related Topics

Stochastic Analysis and Related Topics
Author :
Publisher : Springer Science & Business Media
Total Pages : 372
Release :
ISBN-10 : 9781461203735
ISBN-13 : 1461203732
Rating : 4/5 (35 Downloads)

Book Synopsis Stochastic Analysis and Related Topics by : H. Körezlioglu

Download or read book Stochastic Analysis and Related Topics written by H. Körezlioglu and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains a large spectrum of work: super processes, Dirichlet forms, anticipative stochastic calculus, random fields and Wiener space analysis. The first part of the volume consists of two main lectures given at the third Silivri meeting in 1990: 1. "Infinitely divisible random measures and superprocesses" by D.A. Dawson, 2. "Dirichlet forms on infinite dimensional spaces and appli cations" by M. Rockner. The second part consists of recent research papers all related to Stochastic Analysis, motivated by stochastic partial differ ential equations, Markov fields, the Malliavin calculus and the Feynman path integrals. We would herewith like to thank the ENST for its material support for the above mentioned meeting as well as for the ini tial preparation of this volume and to our friend and colleague Erhan Qmlar whose help and encouragement for the realization of this volume have been essential. H. Korezlioglu A.S. Ustiinel INFINITELY DIVISIBLE RANDOM MEASURES AND SUPERPROCESSES DONALD A. DAWSON 1. Introduction.