Introduction to Complex Analytic Geometry

Introduction to Complex Analytic Geometry
Author :
Publisher : Birkhäuser
Total Pages : 535
Release :
ISBN-10 : 9783034876179
ISBN-13 : 3034876173
Rating : 4/5 (79 Downloads)

Book Synopsis Introduction to Complex Analytic Geometry by : Stanislaw Lojasiewicz

Download or read book Introduction to Complex Analytic Geometry written by Stanislaw Lojasiewicz and published by Birkhäuser. This book was released on 2013-03-09 with total page 535 pages. Available in PDF, EPUB and Kindle. Book excerpt: facts. An elementary acquaintance with topology, algebra, and analysis (in cluding the notion of a manifold) is sufficient as far as the understanding of this book is concerned. All the necessary properties and theorems have been gathered in the preliminary chapters -either with proofs or with references to standard and elementary textbooks. The first chapter of the book is devoted to a study of the rings Oa of holomorphic functions. The notions of analytic sets and germs are introduced in the second chapter. Its aim is to present elementary properties of these objects, also in connection with ideals of the rings Oa. The case of principal germs (§5) and one-dimensional germs (Puiseux theorem, §6) are treated separately. The main step towards understanding of the local structure of analytic sets is Ruckert's descriptive lemma proved in Chapter III. Among its conse quences is the important Hilbert Nullstellensatz (§4). In the fourth chapter, a study of local structure (normal triples, § 1) is followed by an exposition of the basic properties of analytic sets. The latter includes theorems on the set of singular points, irreducibility, and decom position into irreducible branches (§2). The role played by the ring 0 A of an analytic germ is shown (§4). Then, the Remmert-Stein theorem on re movable singularities is proved (§6). The last part of the chapter deals with analytically constructible sets (§7).

Complex Geometry

Complex Geometry
Author :
Publisher : Springer Science & Business Media
Total Pages : 336
Release :
ISBN-10 : 3540212906
ISBN-13 : 9783540212904
Rating : 4/5 (06 Downloads)

Book Synopsis Complex Geometry by : Daniel Huybrechts

Download or read book Complex Geometry written by Daniel Huybrechts and published by Springer Science & Business Media. This book was released on 2005 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: Easily accessible Includes recent developments Assumes very little knowledge of differentiable manifolds and functional analysis Particular emphasis on topics related to mirror symmetry (SUSY, Kaehler-Einstein metrics, Tian-Todorov lemma)

Riemann Surfaces by Way of Complex Analytic Geometry

Riemann Surfaces by Way of Complex Analytic Geometry
Author :
Publisher : American Mathematical Soc.
Total Pages : 258
Release :
ISBN-10 : 9780821853696
ISBN-13 : 0821853694
Rating : 4/5 (96 Downloads)

Book Synopsis Riemann Surfaces by Way of Complex Analytic Geometry by : Dror Varolin

Download or read book Riemann Surfaces by Way of Complex Analytic Geometry written by Dror Varolin and published by American Mathematical Soc.. This book was released on 2011-08-10 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book establishes the basic function theory and complex geometry of Riemann surfaces, both open and compact. Many of the methods used in the book are adaptations and simplifications of methods from the theories of several complex variables and complex analytic geometry and would serve as excellent training for mathematicians wanting to work in complex analytic geometry. After three introductory chapters, the book embarks on its central, and certainly most novel, goal of studying Hermitian holomorphic line bundles and their sections. Among other things, finite-dimensionality of spaces of sections of holomorphic line bundles of compact Riemann surfaces and the triviality of holomorphic line bundles over Riemann surfaces are proved, with various applications. Perhaps the main result of the book is Hormander's Theorem on the square-integrable solution of the Cauchy-Riemann equations. The crowning application is the proof of the Kodaira and Narasimhan Embedding Theorems for compact and open Riemann surfaces. The intended reader has had first courses in real and complex analysis, as well as advanced calculus and basic differential topology (though the latter subject is not crucial). As such, the book should appeal to a broad portion of the mathematical and scientific community. This book is the first to give a textbook exposition of Riemann surface theory from the viewpoint of positive Hermitian line bundles and Hormander $\bar \partial$ estimates. It is more analytical and PDE oriented than prior texts in the field, and is an excellent introduction to the methods used currently in complex geometry, as exemplified in J. P. Demailly's online but otherwise unpublished book ``Complex analytic and differential geometry.'' I used it for a one quarter course on Riemann surfaces and found it to be clearly written and self-contained. It not only fills a significant gap in the large textbook literature on Riemann surfaces but is also rather indispensible for those who would like to teach the subject from a differential geometric and PDE viewpoint. --Steven Zelditch

From Holomorphic Functions to Complex Manifolds

From Holomorphic Functions to Complex Manifolds
Author :
Publisher : Springer Science & Business Media
Total Pages : 406
Release :
ISBN-10 : 9781468492736
ISBN-13 : 146849273X
Rating : 4/5 (36 Downloads)

Book Synopsis From Holomorphic Functions to Complex Manifolds by : Klaus Fritzsche

Download or read book From Holomorphic Functions to Complex Manifolds written by Klaus Fritzsche and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 406 pages. Available in PDF, EPUB and Kindle. Book excerpt: This introduction to the theory of complex manifolds covers the most important branches and methods in complex analysis of several variables while completely avoiding abstract concepts involving sheaves, coherence, and higher-dimensional cohomology. Only elementary methods such as power series, holomorphic vector bundles, and one-dimensional cocycles are used. Each chapter contains a variety of examples and exercises.

Algebraic and Analytic Geometry

Algebraic and Analytic Geometry
Author :
Publisher : Cambridge University Press
Total Pages : 433
Release :
ISBN-10 : 9780521709835
ISBN-13 : 0521709830
Rating : 4/5 (35 Downloads)

Book Synopsis Algebraic and Analytic Geometry by : Amnon Neeman

Download or read book Algebraic and Analytic Geometry written by Amnon Neeman and published by Cambridge University Press. This book was released on 2007-09-13 with total page 433 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modern introduction to algebraic geometry for undergraduates; uses analytic ideas to access algebraic theory.

Complex Analysis

Complex Analysis
Author :
Publisher : Springer Science & Business Media
Total Pages : 508
Release :
ISBN-10 : 9780387216072
ISBN-13 : 0387216073
Rating : 4/5 (72 Downloads)

Book Synopsis Complex Analysis by : Theodore W. Gamelin

Download or read book Complex Analysis written by Theodore W. Gamelin and published by Springer Science & Business Media. This book was released on 2013-11-01 with total page 508 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to complex analysis for students with some knowledge of complex numbers from high school. It contains sixteen chapters, the first eleven of which are aimed at an upper division undergraduate audience. The remaining five chapters are designed to complete the coverage of all background necessary for passing PhD qualifying exams in complex analysis. Topics studied include Julia sets and the Mandelbrot set, Dirichlet series and the prime number theorem, and the uniformization theorem for Riemann surfaces, with emphasis placed on the three geometries: spherical, euclidean, and hyperbolic. Throughout, exercises range from the very simple to the challenging. The book is based on lectures given by the author at several universities, including UCLA, Brown University, La Plata, Buenos Aires, and the Universidad Autonomo de Valencia, Spain.

Complex Analysis and Algebraic Geometry

Complex Analysis and Algebraic Geometry
Author :
Publisher : CUP Archive
Total Pages : 424
Release :
ISBN-10 : 0521217776
ISBN-13 : 9780521217774
Rating : 4/5 (76 Downloads)

Book Synopsis Complex Analysis and Algebraic Geometry by : Kunihiko Kodaira

Download or read book Complex Analysis and Algebraic Geometry written by Kunihiko Kodaira and published by CUP Archive. This book was released on 1977 with total page 424 pages. Available in PDF, EPUB and Kindle. Book excerpt: The articles in this volume cover some developments in complex analysis and algebraic geometry. The book is divided into three parts. Part I includes topics in the theory of algebraic surfaces and analytic surface. Part II covers topics in moduli and classification problems, as well as structure theory of certain complex manifolds. Part III is devoted to various topics in algebraic geometry analysis and arithmetic. A survey article by Ueno serves as an introduction to the general background of the subject matter of the volume. The volume was written for Kunihiko Kodaira on the occasion of his sixtieth birthday, by his friends and students. Professor Kodaira was one of the world's leading mathematicians in algebraic geometry and complex manifold theory: and the contributions reflect those concerns.