Riemann Surfaces by Way of Complex Analytic Geometry

Riemann Surfaces by Way of Complex Analytic Geometry
Author :
Publisher : American Mathematical Soc.
Total Pages : 258
Release :
ISBN-10 : 9780821884270
ISBN-13 : 0821884271
Rating : 4/5 (70 Downloads)

Book Synopsis Riemann Surfaces by Way of Complex Analytic Geometry by : Dror Varolin

Download or read book Riemann Surfaces by Way of Complex Analytic Geometry written by Dror Varolin and published by American Mathematical Soc.. This book was released on with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Algebraic Curves and Riemann Surfaces

Algebraic Curves and Riemann Surfaces
Author :
Publisher : American Mathematical Soc.
Total Pages : 414
Release :
ISBN-10 : 9780821802687
ISBN-13 : 0821802682
Rating : 4/5 (87 Downloads)

Book Synopsis Algebraic Curves and Riemann Surfaces by : Rick Miranda

Download or read book Algebraic Curves and Riemann Surfaces written by Rick Miranda and published by American Mathematical Soc.. This book was released on 1995 with total page 414 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book, Miranda takes the approach that algebraic curves are best encountered for the first time over the complex numbers, where the reader's classical intuition about surfaces, integration, and other concepts can be brought into play. Therefore, many examples of algebraic curves are presented in the first chapters. In this way, the book begins as a primer on Riemann surfaces, with complex charts and meromorphic functions taking centre stage. But the main examples come fromprojective curves, and slowly but surely the text moves toward the algebraic category. Proofs of the Riemann-Roch and Serre Dualtiy Theorems are presented in an algebraic manner, via an adaptation of the adelic proof, expressed completely in terms of solving a Mittag-Leffler problem. Sheaves andcohomology are introduced as a unifying device in the later chapters, so that their utility and naturalness are immediately obvious. Requiring a background of one term of complex variable theory and a year of abstract algebra, this is an excellent graduate textbook for a second-term course in complex variables or a year-long course in algebraic geometry.

A Course in Complex Analysis and Riemann Surfaces

A Course in Complex Analysis and Riemann Surfaces
Author :
Publisher : American Mathematical Society
Total Pages : 402
Release :
ISBN-10 : 9780821898475
ISBN-13 : 0821898477
Rating : 4/5 (75 Downloads)

Book Synopsis A Course in Complex Analysis and Riemann Surfaces by : Wilhelm Schlag

Download or read book A Course in Complex Analysis and Riemann Surfaces written by Wilhelm Schlag and published by American Mathematical Society. This book was released on 2014-08-06 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: Complex analysis is a cornerstone of mathematics, making it an essential element of any area of study in graduate mathematics. Schlag's treatment of the subject emphasizes the intuitive geometric underpinnings of elementary complex analysis that naturally lead to the theory of Riemann surfaces. The book begins with an exposition of the basic theory of holomorphic functions of one complex variable. The first two chapters constitute a fairly rapid, but comprehensive course in complex analysis. The third chapter is devoted to the study of harmonic functions on the disk and the half-plane, with an emphasis on the Dirichlet problem. Starting with the fourth chapter, the theory of Riemann surfaces is developed in some detail and with complete rigor. From the beginning, the geometric aspects are emphasized and classical topics such as elliptic functions and elliptic integrals are presented as illustrations of the abstract theory. The special role of compact Riemann surfaces is explained, and their connection with algebraic equations is established. The book concludes with three chapters devoted to three major results: the Hodge decomposition theorem, the Riemann-Roch theorem, and the uniformization theorem. These chapters present the core technical apparatus of Riemann surface theory at this level. This text is intended as a detailed, yet fast-paced intermediate introduction to those parts of the theory of one complex variable that seem most useful in other areas of mathematics, including geometric group theory, dynamics, algebraic geometry, number theory, and functional analysis. More than seventy figures serve to illustrate concepts and ideas, and the many problems at the end of each chapter give the reader ample opportunity for practice and independent study.

Moduli Spaces of Riemann Surfaces

Moduli Spaces of Riemann Surfaces
Author :
Publisher : American Mathematical Soc.
Total Pages : 371
Release :
ISBN-10 : 9780821898871
ISBN-13 : 0821898876
Rating : 4/5 (71 Downloads)

Book Synopsis Moduli Spaces of Riemann Surfaces by : Benson Farb

Download or read book Moduli Spaces of Riemann Surfaces written by Benson Farb and published by American Mathematical Soc.. This book was released on 2013-08-16 with total page 371 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mapping class groups and moduli spaces of Riemann surfaces were the topics of the Graduate Summer School at the 2011 IAS/Park City Mathematics Institute. This book presents the nine different lecture series comprising the summer school, covering a selection of topics of current interest. The introductory courses treat mapping class groups and Teichmüller theory. The more advanced courses cover intersection theory on moduli spaces, the dynamics of polygonal billiards and moduli spaces, the stable cohomology of mapping class groups, the structure of Torelli groups, and arithmetic mapping class groups. The courses consist of a set of intensive short lectures offered by leaders in the field, designed to introduce students to exciting, current research in mathematics. These lectures do not duplicate standard courses available elsewhere. The book should be a valuable resource for graduate students and researchers interested in the topology, geometry and dynamics of moduli spaces of Riemann surfaces and related topics. Titles in this series are co-published with the Institute for Advanced Study/Park City Mathematics Institute. Members of the Mathematical Association of America (MAA) and the National Council of Teachers of Mathematics (NCTM) receive a 20% discount from list price.

Riemann Surfaces by Way of Complex Analytic Geometry

Riemann Surfaces by Way of Complex Analytic Geometry
Author :
Publisher : American Mathematical Soc.
Total Pages : 258
Release :
ISBN-10 : 9780821853696
ISBN-13 : 0821853694
Rating : 4/5 (96 Downloads)

Book Synopsis Riemann Surfaces by Way of Complex Analytic Geometry by : Dror Varolin

Download or read book Riemann Surfaces by Way of Complex Analytic Geometry written by Dror Varolin and published by American Mathematical Soc.. This book was released on 2011-08-10 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book establishes the basic function theory and complex geometry of Riemann surfaces, both open and compact. Many of the methods used in the book are adaptations and simplifications of methods from the theories of several complex variables and complex analytic geometry and would serve as excellent training for mathematicians wanting to work in complex analytic geometry. After three introductory chapters, the book embarks on its central, and certainly most novel, goal of studying Hermitian holomorphic line bundles and their sections. Among other things, finite-dimensionality of spaces of sections of holomorphic line bundles of compact Riemann surfaces and the triviality of holomorphic line bundles over Riemann surfaces are proved, with various applications. Perhaps the main result of the book is Hormander's Theorem on the square-integrable solution of the Cauchy-Riemann equations. The crowning application is the proof of the Kodaira and Narasimhan Embedding Theorems for compact and open Riemann surfaces. The intended reader has had first courses in real and complex analysis, as well as advanced calculus and basic differential topology (though the latter subject is not crucial). As such, the book should appeal to a broad portion of the mathematical and scientific community. This book is the first to give a textbook exposition of Riemann surface theory from the viewpoint of positive Hermitian line bundles and Hormander $\bar \partial$ estimates. It is more analytical and PDE oriented than prior texts in the field, and is an excellent introduction to the methods used currently in complex geometry, as exemplified in J. P. Demailly's online but otherwise unpublished book ``Complex analytic and differential geometry.'' I used it for a one quarter course on Riemann surfaces and found it to be clearly written and self-contained. It not only fills a significant gap in the large textbook literature on Riemann surfaces but is also rather indispensible for those who would like to teach the subject from a differential geometric and PDE viewpoint. --Steven Zelditch

The Concept of a Riemann Surface

The Concept of a Riemann Surface
Author :
Publisher : Courier Corporation
Total Pages : 210
Release :
ISBN-10 : 9780486131672
ISBN-13 : 048613167X
Rating : 4/5 (72 Downloads)

Book Synopsis The Concept of a Riemann Surface by : Hermann Weyl

Download or read book The Concept of a Riemann Surface written by Hermann Weyl and published by Courier Corporation. This book was released on 2013-12-31 with total page 210 pages. Available in PDF, EPUB and Kindle. Book excerpt: This classic on the general history of functions combines function theory and geometry, forming the basis of the modern approach to analysis, geometry, and topology. 1955 edition.

Lectures on Riemann Surfaces

Lectures on Riemann Surfaces
Author :
Publisher : Springer Science & Business Media
Total Pages : 262
Release :
ISBN-10 : 9781461259619
ISBN-13 : 1461259614
Rating : 4/5 (19 Downloads)

Book Synopsis Lectures on Riemann Surfaces by : Otto Forster

Download or read book Lectures on Riemann Surfaces written by Otto Forster and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 262 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book grew out of lectures on Riemann surfaces given by Otto Forster at the universities of Munich, Regensburg, and Münster. It provides a concise modern introduction to this rewarding subject, as well as presenting methods used in the study of complex manifolds in the special case of complex dimension one. From the reviews: "This book deserves very serious consideration as a text for anyone contemplating giving a course on Riemann surfaces."—-MATHEMATICAL REVIEWS