From Holomorphic Functions to Complex Manifolds

From Holomorphic Functions to Complex Manifolds
Author :
Publisher : Springer Science & Business Media
Total Pages : 406
Release :
ISBN-10 : 9781468492736
ISBN-13 : 146849273X
Rating : 4/5 (36 Downloads)

Book Synopsis From Holomorphic Functions to Complex Manifolds by : Klaus Fritzsche

Download or read book From Holomorphic Functions to Complex Manifolds written by Klaus Fritzsche and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 406 pages. Available in PDF, EPUB and Kindle. Book excerpt: This introduction to the theory of complex manifolds covers the most important branches and methods in complex analysis of several variables while completely avoiding abstract concepts involving sheaves, coherence, and higher-dimensional cohomology. Only elementary methods such as power series, holomorphic vector bundles, and one-dimensional cocycles are used. Each chapter contains a variety of examples and exercises.

From Holomorphic Functions to Complex Manifolds

From Holomorphic Functions to Complex Manifolds
Author :
Publisher : Springer Science & Business Media
Total Pages : 424
Release :
ISBN-10 : 0387953957
ISBN-13 : 9780387953953
Rating : 4/5 (57 Downloads)

Book Synopsis From Holomorphic Functions to Complex Manifolds by : Klaus Fritzsche

Download or read book From Holomorphic Functions to Complex Manifolds written by Klaus Fritzsche and published by Springer Science & Business Media. This book was released on 2002-04-12 with total page 424 pages. Available in PDF, EPUB and Kindle. Book excerpt: This introduction to the theory of complex manifolds covers the most important branches and methods in complex analysis of several variables while completely avoiding abstract concepts involving sheaves, coherence, and higher-dimensional cohomology. Only elementary methods such as power series, holomorphic vector bundles, and one-dimensional cocycles are used. Each chapter contains a variety of examples and exercises.

From Holomorphic Functions to Complex Manifolds

From Holomorphic Functions to Complex Manifolds
Author :
Publisher : Springer
Total Pages : 398
Release :
ISBN-10 : 1441929835
ISBN-13 : 9781441929839
Rating : 4/5 (35 Downloads)

Book Synopsis From Holomorphic Functions to Complex Manifolds by : Klaus Fritzsche

Download or read book From Holomorphic Functions to Complex Manifolds written by Klaus Fritzsche and published by Springer. This book was released on 2010-12-03 with total page 398 pages. Available in PDF, EPUB and Kindle. Book excerpt: This introduction to the theory of complex manifolds covers the most important branches and methods in complex analysis of several variables while completely avoiding abstract concepts involving sheaves, coherence, and higher-dimensional cohomology. Only elementary methods such as power series, holomorphic vector bundles, and one-dimensional cocycles are used. Each chapter contains a variety of examples and exercises.

Complex Manifolds and Deformation of Complex Structures

Complex Manifolds and Deformation of Complex Structures
Author :
Publisher : Springer Science & Business Media
Total Pages : 476
Release :
ISBN-10 : 9781461385905
ISBN-13 : 1461385903
Rating : 4/5 (05 Downloads)

Book Synopsis Complex Manifolds and Deformation of Complex Structures by : K. Kodaira

Download or read book Complex Manifolds and Deformation of Complex Structures written by K. Kodaira and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 476 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an introduction to the theory of complex manifolds and their deformations. Deformation of the complex structure of Riemann surfaces is an idea which goes back to Riemann who, in his famous memoir on Abelian functions published in 1857, calculated the number of effective parameters on which the deformation depends. Since the publication of Riemann's memoir, questions concerning the deformation of the complex structure of Riemann surfaces have never lost their interest. The deformation of algebraic surfaces seems to have been considered first by Max Noether in 1888 (M. Noether: Anzahl der Modulen einer Classe algebraischer Fliichen, Sitz. K6niglich. Preuss. Akad. der Wiss. zu Berlin, erster Halbband, 1888, pp. 123-127). However, the deformation of higher dimensional complex manifolds had been curiously neglected for 100 years. In 1957, exactly 100 years after Riemann's memoir, Frolicher and Nijenhuis published a paper in which they studied deformation of higher dimensional complex manifolds by a differential geometric method and obtained an important result. (A. Fr61icher and A. Nijenhuis: A theorem on stability of complex structures, Proc. Nat. Acad. Sci., U.S.A., 43 (1957), 239-241).

Differential Analysis on Complex Manifolds

Differential Analysis on Complex Manifolds
Author :
Publisher : Springer Science & Business Media
Total Pages : 269
Release :
ISBN-10 : 9781475739466
ISBN-13 : 147573946X
Rating : 4/5 (66 Downloads)

Book Synopsis Differential Analysis on Complex Manifolds by : R. O. Wells

Download or read book Differential Analysis on Complex Manifolds written by R. O. Wells and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 269 pages. Available in PDF, EPUB and Kindle. Book excerpt: In developing the tools necessary for the study of complex manifolds, this comprehensive, well-organized treatment presents in its opening chapters a detailed survey of recent progress in four areas: geometry (manifolds with vector bundles), algebraic topology, differential geometry, and partial differential equations. Subsequent chapters then develop such topics as Hermitian exterior algebra and the Hodge *-operator, harmonic theory on compact manifolds, differential operators on a Kahler manifold, the Hodge decomposition theorem on compact Kahler manifolds, the Hodge-Riemann bilinear relations on Kahler manifolds, Griffiths's period mapping, quadratic transformations, and Kodaira's vanishing and embedding theorems. The third edition of this standard reference contains a new appendix by Oscar Garcia-Prada which gives an overview of certain developments in the field during the decades since the book first appeared. From reviews of the 2nd Edition: "..the new edition of Professor Wells' book is timely and welcome...an excellent introduction for any mathematician who suspects that complex manifold techniques may be relevant to his work." - Nigel Hitchin, Bulletin of the London Mathematical Society "Its purpose is to present the basics of analysis and geometry on compact complex manifolds, and is already one of the standard sources for this material." - Daniel M. Burns, Jr., Mathematical Reviews

Elementary Theory of Analytic Functions of One or Several Complex Variables

Elementary Theory of Analytic Functions of One or Several Complex Variables
Author :
Publisher : Courier Corporation
Total Pages : 242
Release :
ISBN-10 : 9780486318677
ISBN-13 : 0486318672
Rating : 4/5 (77 Downloads)

Book Synopsis Elementary Theory of Analytic Functions of One or Several Complex Variables by : Henri Cartan

Download or read book Elementary Theory of Analytic Functions of One or Several Complex Variables written by Henri Cartan and published by Courier Corporation. This book was released on 2013-04-22 with total page 242 pages. Available in PDF, EPUB and Kindle. Book excerpt: Basic treatment includes existence theorem for solutions of differential systems where data is analytic, holomorphic functions, Cauchy's integral, Taylor and Laurent expansions, more. Exercises. 1973 edition.

Coherent Analytic Sheaves

Coherent Analytic Sheaves
Author :
Publisher : Springer Science & Business Media
Total Pages : 267
Release :
ISBN-10 : 9783642695827
ISBN-13 : 3642695825
Rating : 4/5 (27 Downloads)

Book Synopsis Coherent Analytic Sheaves by : H. Grauert

Download or read book Coherent Analytic Sheaves written by H. Grauert and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 267 pages. Available in PDF, EPUB and Kindle. Book excerpt: ... Je mehr ich tiber die Principien der Functionentheorie nachdenke - und ich thue dies unablassig -, urn so fester wird meine Uberzeugung, dass diese auf dem Fundamente algebraischer Wahrheiten aufgebaut werden muss (WEIERSTRASS, Glaubensbekenntnis 1875, Math. Werke II, p. 235). 1. Sheaf Theory is a general tool for handling questions which involve local solutions and global patching. "La notion de faisceau s'introduit parce qu'il s'agit de passer de donnees 'locales' a l'etude de proprietes 'globales'" [CAR], p. 622. The methods of sheaf theory are algebraic. The notion of a sheaf was first introduced in 1946 by J. LERAY in a short note Eanneau d'homologie d'une representation, C.R. Acad. Sci. 222, 1366-68. Of course sheaves had occurred implicitly much earlier in mathematics. The "Monogene analytische Functionen", which K. WEIERSTRASS glued together from "Func tionselemente durch analytische Fortsetzung", are simply the connected components of the sheaf of germs of holomorphic functions on a RIEMANN surface*'; and the "ideaux de domaines indetermines", basic in the work of K. OKA since 1948 (cf. [OKA], p. 84, 107), are just sheaves of ideals of germs of holomorphic functions. Highly original contributions to mathematics are usually not appreciated at first. Fortunately H. CARTAN immediately realized the great importance of LERAY'S new abstract concept of a sheaf. In the polycopied notes of his Semina ire at the E.N.S