Lectures on Invariant Theory

Lectures on Invariant Theory
Author :
Publisher : Cambridge University Press
Total Pages : 244
Release :
ISBN-10 : 0521525489
ISBN-13 : 9780521525480
Rating : 4/5 (89 Downloads)

Book Synopsis Lectures on Invariant Theory by : Igor Dolgachev

Download or read book Lectures on Invariant Theory written by Igor Dolgachev and published by Cambridge University Press. This book was released on 2003-08-07 with total page 244 pages. Available in PDF, EPUB and Kindle. Book excerpt: The primary goal of this 2003 book is to give a brief introduction to the main ideas of algebraic and geometric invariant theory. It assumes only a minimal background in algebraic geometry, algebra and representation theory. Topics covered include the symbolic method for computation of invariants on the space of homogeneous forms, the problem of finite-generatedness of the algebra of invariants, the theory of covariants and constructions of categorical and geometric quotients. Throughout, the emphasis is on concrete examples which originate in classical algebraic geometry. Based on lectures given at University of Michigan, Harvard University and Seoul National University, the book is written in an accessible style and contains many examples and exercises. A novel feature of the book is a discussion of possible linearizations of actions and the variation of quotients under the change of linearization. Also includes the construction of toric varieties as torus quotients of affine spaces.

Invariant Theory

Invariant Theory
Author :
Publisher : Springer
Total Pages : 118
Release :
ISBN-10 : 9783540373704
ISBN-13 : 3540373705
Rating : 4/5 (04 Downloads)

Book Synopsis Invariant Theory by : T.A. Springer

Download or read book Invariant Theory written by T.A. Springer and published by Springer. This book was released on 2006-11-14 with total page 118 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Geometric Invariant Theory and Decorated Principal Bundles

Geometric Invariant Theory and Decorated Principal Bundles
Author :
Publisher : European Mathematical Society
Total Pages : 404
Release :
ISBN-10 : 3037190655
ISBN-13 : 9783037190654
Rating : 4/5 (55 Downloads)

Book Synopsis Geometric Invariant Theory and Decorated Principal Bundles by : Alexander H. W. Schmitt

Download or read book Geometric Invariant Theory and Decorated Principal Bundles written by Alexander H. W. Schmitt and published by European Mathematical Society. This book was released on 2008 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book starts with an introduction to Geometric Invariant Theory (GIT). The fundamental results of Hilbert and Mumford are exposed as well as more recent topics such as the instability flag, the finiteness of the number of quotients, and the variation of quotients. In the second part, GIT is applied to solve the classification problem of decorated principal bundles on a compact Riemann surface. The solution is a quasi-projective moduli scheme which parameterizes those objects that satisfy a semistability condition originating from gauge theory. The moduli space is equipped with a generalized Hitchin map. Via the universal Kobayashi-Hitchin correspondence, these moduli spaces are related to moduli spaces of solutions of certain vortex type equations. Potential applications include the study of representation spaces of the fundamental group of compact Riemann surfaces. The book concludes with a brief discussion of generalizations of these findings to higher dimensional base varieties, positive characteristic, and parabolic bundles. The text is fairly self-contained (e.g., the necessary background from the theory of principal bundles is included) and features numerous examples and exercises. It addresses students and researchers with a working knowledge of elementary algebraic geometry.

The Theory of Algebraic Number Fields

The Theory of Algebraic Number Fields
Author :
Publisher : Springer Science & Business Media
Total Pages : 360
Release :
ISBN-10 : 9783662035450
ISBN-13 : 3662035456
Rating : 4/5 (50 Downloads)

Book Synopsis The Theory of Algebraic Number Fields by : David Hilbert

Download or read book The Theory of Algebraic Number Fields written by David Hilbert and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt: A translation of Hilberts "Theorie der algebraischen Zahlkörper" best known as the "Zahlbericht", first published in 1897, in which he provides an elegantly integrated overview of the development of algebraic number theory up to the end of the nineteenth century. The Zahlbericht also provided a firm foundation for further research in the theory, and can be seen as the starting point for all twentieth century investigations into the subject, as well as reciprocity laws and class field theory. This English edition further contains an introduction by F. Lemmermeyer and N. Schappacher.

Harmonic Analysis, Group Representations, Automorphic Forms, and Invariant Theory

Harmonic Analysis, Group Representations, Automorphic Forms, and Invariant Theory
Author :
Publisher : World Scientific
Total Pages : 446
Release :
ISBN-10 : 9789812770790
ISBN-13 : 9812770798
Rating : 4/5 (90 Downloads)

Book Synopsis Harmonic Analysis, Group Representations, Automorphic Forms, and Invariant Theory by : Roger Howe

Download or read book Harmonic Analysis, Group Representations, Automorphic Forms, and Invariant Theory written by Roger Howe and published by World Scientific. This book was released on 2007 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume carries the same title as that of an international conference held at the National University of Singapore, 9OCo11 January 2006 on the occasion of Roger E. Howe''s 60th birthday. Authored by leading members of the Lie theory community, these contributions, expanded from invited lectures given at the conference, are a fitting tribute to the originality, depth and influence of Howe''s mathematical work. The range and diversity of the topics will appeal to a broad audience of research mathematicians and graduate students interested in symmetry and its profound applications. Sample Chapter(s). Foreword (21 KB). Chapter 1: The Theta Correspondence Over R (342 KB). Contents: The Theta Correspondence over R (J Adams); The Heisenberg Group, SL (3, R), and Rigidity (A iap et al.); Pfaffians and Strategies for Integer Choice Games (R Evans & N Wallach); When is an L -Function Non-Vanishing in Part of the Critical Strip? (S Gelbart); Cohomological Automorphic Forms on Unitary Groups, II: Period Relations and Values of L -Functions (M Harris); The Inversion Formula and Holomorphic Extension of the Minimal Representation of the Conformal Group (T Kobayashi & G Mano); Classification des S(r)ries Discr tes pour Certains Groupes Classiques p- Adiques (C Moeglin); Some Algebras of Essentially Compact Distributions of a Reductive p -Adic Group (A Moy & M Tadic); Annihilators of Generalized Verma Modules of the Scalar Type for Classical Lie Algebras (T Oshima); Branching to a Maximal Compact Subgroup (D A Vogan, Jr.); Small Semisimple Subalgebras of Semisimple Lie Algebras (J F Willenbring & G J Zuckerman). Readership: Graduate students and research mathematicians in harmonic analysis, group representations, automorphic forms and invariant theory."

An Introduction to Invariants and Moduli

An Introduction to Invariants and Moduli
Author :
Publisher : Cambridge University Press
Total Pages : 528
Release :
ISBN-10 : 0521809061
ISBN-13 : 9780521809061
Rating : 4/5 (61 Downloads)

Book Synopsis An Introduction to Invariants and Moduli by : Shigeru Mukai

Download or read book An Introduction to Invariants and Moduli written by Shigeru Mukai and published by Cambridge University Press. This book was released on 2003-09-08 with total page 528 pages. Available in PDF, EPUB and Kindle. Book excerpt: Sample Text

Enumerative Invariants in Algebraic Geometry and String Theory

Enumerative Invariants in Algebraic Geometry and String Theory
Author :
Publisher : Springer
Total Pages : 219
Release :
ISBN-10 : 9783540798149
ISBN-13 : 3540798145
Rating : 4/5 (49 Downloads)

Book Synopsis Enumerative Invariants in Algebraic Geometry and String Theory by : Marcos Marino

Download or read book Enumerative Invariants in Algebraic Geometry and String Theory written by Marcos Marino and published by Springer. This book was released on 2008-08-15 with total page 219 pages. Available in PDF, EPUB and Kindle. Book excerpt: Starting in the middle of the 80s, there has been a growing and fruitful interaction between algebraic geometry and certain areas of theoretical high-energy physics, especially the various versions of string theory. Physical heuristics have provided inspiration for new mathematical definitions (such as that of Gromov-Witten invariants) leading in turn to the solution of problems in enumerative geometry. Conversely, the availability of mathematically rigorous definitions and theorems has benefited the physics research by providing the required evidence in fields where experimental testing seems problematic. The aim of this volume, a result of the CIME Summer School held in Cetraro, Italy, in 2005, is to cover part of the most recent and interesting findings in this subject.