Geometric Invariant Theory and Decorated Principal Bundles

Geometric Invariant Theory and Decorated Principal Bundles
Author :
Publisher : European Mathematical Society
Total Pages : 404
Release :
ISBN-10 : 3037190655
ISBN-13 : 9783037190654
Rating : 4/5 (55 Downloads)

Book Synopsis Geometric Invariant Theory and Decorated Principal Bundles by : Alexander H. W. Schmitt

Download or read book Geometric Invariant Theory and Decorated Principal Bundles written by Alexander H. W. Schmitt and published by European Mathematical Society. This book was released on 2008 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book starts with an introduction to Geometric Invariant Theory (GIT). The fundamental results of Hilbert and Mumford are exposed as well as more recent topics such as the instability flag, the finiteness of the number of quotients, and the variation of quotients. In the second part, GIT is applied to solve the classification problem of decorated principal bundles on a compact Riemann surface. The solution is a quasi-projective moduli scheme which parameterizes those objects that satisfy a semistability condition originating from gauge theory. The moduli space is equipped with a generalized Hitchin map. Via the universal Kobayashi-Hitchin correspondence, these moduli spaces are related to moduli spaces of solutions of certain vortex type equations. Potential applications include the study of representation spaces of the fundamental group of compact Riemann surfaces. The book concludes with a brief discussion of generalizations of these findings to higher dimensional base varieties, positive characteristic, and parabolic bundles. The text is fairly self-contained (e.g., the necessary background from the theory of principal bundles is included) and features numerous examples and exercises. It addresses students and researchers with a working knowledge of elementary algebraic geometry.

Geometric Invariant Theory, Holomorphic Vector Bundles and the Harder-Narasimhan Filtration

Geometric Invariant Theory, Holomorphic Vector Bundles and the Harder-Narasimhan Filtration
Author :
Publisher : Springer Nature
Total Pages : 127
Release :
ISBN-10 : 9783030678296
ISBN-13 : 3030678296
Rating : 4/5 (96 Downloads)

Book Synopsis Geometric Invariant Theory, Holomorphic Vector Bundles and the Harder-Narasimhan Filtration by : Alfonso Zamora Saiz

Download or read book Geometric Invariant Theory, Holomorphic Vector Bundles and the Harder-Narasimhan Filtration written by Alfonso Zamora Saiz and published by Springer Nature. This book was released on 2021-03-24 with total page 127 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces key topics on Geometric Invariant Theory, a technique to obtaining quotients in algebraic geometry with a good set of properties, through various examples. It starts from the classical Hilbert classification of binary forms, advancing to the construction of the moduli space of semistable holomorphic vector bundles, and to Hitchin’s theory on Higgs bundles. The relationship between the notion of stability between algebraic, differential and symplectic geometry settings is also covered. Unstable objects in moduli problems -- a result of the construction of moduli spaces -- get specific attention in this work. The notion of the Harder-Narasimhan filtration as a tool to handle them, and its relationship with GIT quotients, provide instigating new calculations in several problems. Applications include a survey of research results on correspondences between Harder-Narasimhan filtrations with the GIT picture and stratifications of the moduli space of Higgs bundles. Graduate students and researchers who want to approach Geometric Invariant Theory in moduli constructions can greatly benefit from this reading, whose key prerequisites are general courses on algebraic geometry and differential geometry.

Vector Bundles and Complex Geometry

Vector Bundles and Complex Geometry
Author :
Publisher : American Mathematical Soc.
Total Pages : 218
Release :
ISBN-10 : 9780821847503
ISBN-13 : 0821847503
Rating : 4/5 (03 Downloads)

Book Synopsis Vector Bundles and Complex Geometry by : Oscar García-Prada

Download or read book Vector Bundles and Complex Geometry written by Oscar García-Prada and published by American Mathematical Soc.. This book was released on 2010 with total page 218 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains a collection of papers from the Conference on Vector Bundles held at Miraflores de la Sierra, Madrid, Spain on June 16-20, 2008, which honored S. Ramanan on his 70th birthday. The main areas covered in this volume are vector bundles, parabolic bundles, abelian varieties, Hilbert schemes, contact structures, index theory, Hodge theory, and geometric invariant theory. Professor Ramanan has made important contributions in all of these areas.

Moduli Spaces and Vector Bundles

Moduli Spaces and Vector Bundles
Author :
Publisher : Cambridge University Press
Total Pages : 516
Release :
ISBN-10 : 9780521734714
ISBN-13 : 0521734711
Rating : 4/5 (14 Downloads)

Book Synopsis Moduli Spaces and Vector Bundles by : Steve Bradlow

Download or read book Moduli Spaces and Vector Bundles written by Steve Bradlow and published by Cambridge University Press. This book was released on 2009-05-21 with total page 516 pages. Available in PDF, EPUB and Kindle. Book excerpt: Coverage includes foundational material as well as current research, authored by top specialists within their fields.

The Geometry of Moduli Spaces of Sheaves

The Geometry of Moduli Spaces of Sheaves
Author :
Publisher : Cambridge University Press
Total Pages : 345
Release :
ISBN-10 : 9781139485821
ISBN-13 : 1139485822
Rating : 4/5 (21 Downloads)

Book Synopsis The Geometry of Moduli Spaces of Sheaves by : Daniel Huybrechts

Download or read book The Geometry of Moduli Spaces of Sheaves written by Daniel Huybrechts and published by Cambridge University Press. This book was released on 2010-05-27 with total page 345 pages. Available in PDF, EPUB and Kindle. Book excerpt: This edition has been updated to reflect recent advances in the theory of semistable coherent sheaves and their moduli spaces. The authors review changes in the field and point the reader towards further literature. An ideal text for graduate students or mathematicians with a background in algebraic geometry.

String-Math 2014

String-Math 2014
Author :
Publisher : American Mathematical Soc.
Total Pages : 418
Release :
ISBN-10 : 9781470419929
ISBN-13 : 1470419920
Rating : 4/5 (29 Downloads)

Book Synopsis String-Math 2014 by : Vincent Bouchard:

Download or read book String-Math 2014 written by Vincent Bouchard: and published by American Mathematical Soc.. This book was released on 2016-06-10 with total page 418 pages. Available in PDF, EPUB and Kindle. Book excerpt: The conference String-Math 2014 was held from June 9–13, 2014, at the University of Alberta. This edition of String-Math is the first to include satellite workshops: “String-Math Summer School” (held from June 2–6, 2014, at the University of British Columbia), “Calabi-Yau Manifolds and their Moduli” (held from June 14–18, 2014, at the University of Alberta), and “Quantum Curves and Quantum Knot Invariants” (held from June 16–20, 2014, at the Banff International Research Station). This volume presents the proceedings of the conference and satellite workshops. For mathematics, string theory has been a source of many significant inspirations, ranging from Seiberg-Witten theory in four-manifolds, to enumerative geometry and Gromov-Witten theory in algebraic geometry, to work on the Jones polynomial in knot theory, to recent progress in the geometric Langlands program and the development of derived algebraic geometry and n-category theory. In the other direction, mathematics has provided physicists with powerful tools, ranging from powerful differential geometric techniques for solving or analyzing key partial differential equations, to toric geometry, to K-theory and derived categories in D-branes, to the analysis of Calabi-Yau manifolds and string compactifications, to modular forms and other arithmetic techniques. Articles in this book address many of these topics.

Space – Time – Matter

Space – Time – Matter
Author :
Publisher : Walter de Gruyter GmbH & Co KG
Total Pages : 590
Release :
ISBN-10 : 9783110451535
ISBN-13 : 3110451530
Rating : 4/5 (35 Downloads)

Book Synopsis Space – Time – Matter by : Jochen Brüning

Download or read book Space – Time – Matter written by Jochen Brüning and published by Walter de Gruyter GmbH & Co KG. This book was released on 2018-04-09 with total page 590 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph describes some of the most interesting results obtained by the mathematicians and physicists collaborating in the CRC 647 "Space – Time – Matter", in the years 2005 - 2016. The work presented concerns the mathematical and physical foundations of string and quantum field theory as well as cosmology. Important topics are the spaces and metrics modelling the geometry of matter, and the evolution of these geometries. The partial differential equations governing such structures and their singularities, special solutions and stability properties are discussed in detail. Contents Introduction Algebraic K-theory, assembly maps, controlled algebra, and trace methods Lorentzian manifolds with special holonomy – Constructions and global properties Contributions to the spectral geometry of locally homogeneous spaces On conformally covariant differential operators and spectral theory of the holographic Laplacian Moduli and deformations Vector bundles in algebraic geometry and mathematical physics Dyson–Schwinger equations: Fix-point equations for quantum fields Hidden structure in the form factors ofN = 4 SYM On regulating the AdS superstring Constraints on CFT observables from the bootstrap program Simplifying amplitudes in Maxwell-Einstein and Yang-Mills-Einstein supergravities Yangian symmetry in maximally supersymmetric Yang-Mills theory Wave and Dirac equations on manifolds Geometric analysis on singular spaces Singularities and long-time behavior in nonlinear evolution equations and general relativity