Instanton Counting, Quantum Geometry and Algebra

Instanton Counting, Quantum Geometry and Algebra
Author :
Publisher : Springer Nature
Total Pages : 297
Release :
ISBN-10 : 9783030761905
ISBN-13 : 3030761908
Rating : 4/5 (05 Downloads)

Book Synopsis Instanton Counting, Quantum Geometry and Algebra by : Taro Kimura

Download or read book Instanton Counting, Quantum Geometry and Algebra written by Taro Kimura and published by Springer Nature. This book was released on 2021-07-05 with total page 297 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book pedagogically describes recent developments in gauge theory, in particular four-dimensional N = 2 supersymmetric gauge theory, in relation to various fields in mathematics, including algebraic geometry, geometric representation theory, vertex operator algebras. The key concept is the instanton, which is a solution to the anti-self-dual Yang–Mills equation in four dimensions. In the first part of the book, starting with the systematic description of the instanton, how to integrate out the instanton moduli space is explained together with the equivariant localization formula. It is then illustrated that this formalism is generalized to various situations, including quiver and fractional quiver gauge theory, supergroup gauge theory. The second part of the book is devoted to the algebraic geometric description of supersymmetric gauge theory, known as the Seiberg–Witten theory, together with string/M-theory point of view. Based on its relation to integrable systems, how to quantize such a geometric structure via the Ω-deformation of gauge theory is addressed. The third part of the book focuses on the quantum algebraic structure of supersymmetric gauge theory. After introducing the free field realization of gauge theory, the underlying infinite dimensional algebraic structure is discussed with emphasis on the connection with representation theory of quiver, which leads to the notion of quiver W-algebra. It is then clarified that such a gauge theory construction of the algebra naturally gives rise to further affinization and elliptic deformation of W-algebra.

Lie Theory and Its Applications in Physics

Lie Theory and Its Applications in Physics
Author :
Publisher : Springer Nature
Total Pages : 526
Release :
ISBN-10 : 9789811947513
ISBN-13 : 9811947511
Rating : 4/5 (13 Downloads)

Book Synopsis Lie Theory and Its Applications in Physics by : Vladimir Dobrev

Download or read book Lie Theory and Its Applications in Physics written by Vladimir Dobrev and published by Springer Nature. This book was released on 2023-01-29 with total page 526 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents modern trends in the area of symmetries and their applications based on contributions to the Workshop "Lie Theory and Its Applications in Physics" held in Sofia, Bulgaria (on-line) in June 2021. Traditionally, Lie theory is a tool to build mathematical models for physical systems. Recently, the trend is towards geometrization of the mathematical description of physical systems and objects. A geometric approach to a system yields in general some notion of symmetry which is very helpful in understanding its structure. Geometrization and symmetries are meant in their widest sense, i.e., representation theory, algebraic geometry, number theory, infinite-dimensional Lie algebras and groups, superalgebras and supergroups, groups and quantum groups, noncommutative geometry, symmetries of linear and nonlinear partial differential operators, special functions, and others. Furthermore, the necessary tools from functional analysis are included. This is a big interdisciplinary and interrelated field. The topics covered in this Volume are the most modern trends in the field of the Workshop: Representation Theory, Symmetries in String Theories, Symmetries in Gravity Theories, Supergravity, Conformal Field Theory, Integrable Systems, Quantum Computing and Deep Learning, Entanglement, Applications to Quantum Theory, Exceptional quantum algebra for the standard model of particle physics, Gauge Theories and Applications, Structures on Lie Groups and Lie Algebras. This book is suitable for a broad audience of mathematicians, mathematical physicists, and theoretical physicists, including researchers and graduate students interested in Lie Theory.

Topological Recursion and its Influence in Analysis, Geometry, and Topology

Topological Recursion and its Influence in Analysis, Geometry, and Topology
Author :
Publisher : American Mathematical Soc.
Total Pages : 578
Release :
ISBN-10 : 9781470435417
ISBN-13 : 1470435411
Rating : 4/5 (17 Downloads)

Book Synopsis Topological Recursion and its Influence in Analysis, Geometry, and Topology by : Chiu-Chu Melissa Liu

Download or read book Topological Recursion and its Influence in Analysis, Geometry, and Topology written by Chiu-Chu Melissa Liu and published by American Mathematical Soc.. This book was released on 2018-11-19 with total page 578 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the proceedings of the 2016 AMS von Neumann Symposium on Topological Recursion and its Influence in Analysis, Geometry, and Topology, which was held from July 4–8, 2016, at the Hilton Charlotte University Place, Charlotte, North Carolina. The papers contained in the volume present a snapshot of rapid and rich developments in the emerging research field known as topological recursion. It has its origin around 2004 in random matrix theory and also in Mirzakhani's work on the volume of moduli spaces of hyperbolic surfaces. Topological recursion has played a fundamental role in connecting seemingly unrelated areas of mathematics such as matrix models, enumeration of Hurwitz numbers and Grothendieck's dessins d'enfants, Gromov-Witten invariants, the A-polynomials and colored polynomial invariants of knots, WKB analysis, and quantization of Hitchin moduli spaces. In addition to establishing these topics, the volume includes survey papers on the most recent key accomplishments: discovery of the unexpected relation to semi-simple cohomological field theories and a solution to the remodeling conjecture. It also provides a glimpse into the future research direction; for example, connections with the Airy structures, modular functors, Hurwitz-Frobenius manifolds, and ELSV-type formulas.

Geometry of Moduli Spaces and Representation Theory

Geometry of Moduli Spaces and Representation Theory
Author :
Publisher : American Mathematical Soc.
Total Pages : 449
Release :
ISBN-10 : 9781470435745
ISBN-13 : 1470435748
Rating : 4/5 (45 Downloads)

Book Synopsis Geometry of Moduli Spaces and Representation Theory by : Roman Bezrukavnikov

Download or read book Geometry of Moduli Spaces and Representation Theory written by Roman Bezrukavnikov and published by American Mathematical Soc.. This book was released on 2017-12-15 with total page 449 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is based on lectures given at the Graduate Summer School of the 2015 Park City Mathematics Institute program “Geometry of moduli spaces and representation theory”, and is devoted to several interrelated topics in algebraic geometry, topology of algebraic varieties, and representation theory. Geometric representation theory is a young but fast developing research area at the intersection of these subjects. An early profound achievement was the famous conjecture by Kazhdan–Lusztig about characters of highest weight modules over a complex semi-simple Lie algebra, and its subsequent proof by Beilinson-Bernstein and Brylinski-Kashiwara. Two remarkable features of this proof have inspired much of subsequent development: intricate algebraic data turned out to be encoded in topological invariants of singular geometric spaces, while proving this fact required deep general theorems from algebraic geometry. Another focus of the program was enumerative algebraic geometry. Recent progress showed the role of Lie theoretic structures in problems such as calculation of quantum cohomology, K-theory, etc. Although the motivation and technical background of these constructions is quite different from that of geometric Langlands duality, both theories deal with topological invariants of moduli spaces of maps from a target of complex dimension one. Thus they are at least heuristically related, while several recent works indicate possible strong technical connections. The main goal of this collection of notes is to provide young researchers and experts alike with an introduction to these areas of active research and promote interaction between the two related directions.

Studies in Lie Theory

Studies in Lie Theory
Author :
Publisher : Springer Science & Business Media
Total Pages : 526
Release :
ISBN-10 : 0817643427
ISBN-13 : 9780817643423
Rating : 4/5 (27 Downloads)

Book Synopsis Studies in Lie Theory by : Anthony Joseph

Download or read book Studies in Lie Theory written by Anthony Joseph and published by Springer Science & Business Media. This book was released on 2006-01-26 with total page 526 pages. Available in PDF, EPUB and Kindle. Book excerpt: Contains new results on different aspects of Lie theory, including Lie superalgebras, quantum groups, crystal bases, representations of reductive groups in finite characteristic, and the geometric Langlands program

Quantum Theory and Symmetries with Lie Theory and Its Applications in Physics Volume 1

Quantum Theory and Symmetries with Lie Theory and Its Applications in Physics Volume 1
Author :
Publisher : Springer
Total Pages : 419
Release :
ISBN-10 : 9789811327155
ISBN-13 : 9811327157
Rating : 4/5 (55 Downloads)

Book Synopsis Quantum Theory and Symmetries with Lie Theory and Its Applications in Physics Volume 1 by : Vladimir Dobrev

Download or read book Quantum Theory and Symmetries with Lie Theory and Its Applications in Physics Volume 1 written by Vladimir Dobrev and published by Springer. This book was released on 2018-11-28 with total page 419 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the first volume of proceedings from the joint conference X International Symposium “Quantum Theory and Symmetries” (QTS-X) and XII International Workshop “Lie Theory and Its Applications in Physics” (LT-XII), held on 19–25 June 2017 in Varna, Bulgaria. The QTS series was founded on the core principle that symmetries underlie all descriptions of quantum systems. It has since evolved into a symposium at the forefront of theoretical and mathematical physics. The LT series covers the whole field of Lie theory in its widest sense, together with its applications in many areas of physics. As an interface between mathematics and physics, the workshop serves as a meeting place for mathematicians and theoretical and mathematical physicists. In dividing the material between the two volumes, the Editor has sought to select papers that are more oriented toward mathematics for the first volume, and those focusing more on physics for the second. However, this division is relative, since many papers are equally suitable for either volume. The topics addressed in this volume represent the latest trends in the fields covered by the joint conferences: representation theory, integrability, entanglement, quantum groups, number theory, conformal geometry, quantum affine superalgebras, noncommutative geometry. Further, they present various mathematical results: on minuscule modules, symmetry breaking operators, Kashiwara crystals, meta-conformal invariance, the superintegrable Zernike system.

Strings and Geometry

Strings and Geometry
Author :
Publisher : American Mathematical Soc.
Total Pages : 396
Release :
ISBN-10 : 082183715X
ISBN-13 : 9780821837153
Rating : 4/5 (5X Downloads)

Book Synopsis Strings and Geometry by : Clay Mathematics Institute. Summer School

Download or read book Strings and Geometry written by Clay Mathematics Institute. Summer School and published by American Mathematical Soc.. This book was released on 2004 with total page 396 pages. Available in PDF, EPUB and Kindle. Book excerpt: Contains selection of expository and research article by lecturers at the school. Highlights current interests of researchers working at the interface between string theory and algebraic supergravity, supersymmetry, D-branes, the McKay correspondence andFourer-Mukai transform.