Topological Recursion and its Influence in Analysis, Geometry, and Topology

Topological Recursion and its Influence in Analysis, Geometry, and Topology
Author :
Publisher : American Mathematical Soc.
Total Pages : 578
Release :
ISBN-10 : 9781470435417
ISBN-13 : 1470435411
Rating : 4/5 (17 Downloads)

Book Synopsis Topological Recursion and its Influence in Analysis, Geometry, and Topology by : Chiu-Chu Melissa Liu

Download or read book Topological Recursion and its Influence in Analysis, Geometry, and Topology written by Chiu-Chu Melissa Liu and published by American Mathematical Soc.. This book was released on 2018-11-19 with total page 578 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the proceedings of the 2016 AMS von Neumann Symposium on Topological Recursion and its Influence in Analysis, Geometry, and Topology, which was held from July 4–8, 2016, at the Hilton Charlotte University Place, Charlotte, North Carolina. The papers contained in the volume present a snapshot of rapid and rich developments in the emerging research field known as topological recursion. It has its origin around 2004 in random matrix theory and also in Mirzakhani's work on the volume of moduli spaces of hyperbolic surfaces. Topological recursion has played a fundamental role in connecting seemingly unrelated areas of mathematics such as matrix models, enumeration of Hurwitz numbers and Grothendieck's dessins d'enfants, Gromov-Witten invariants, the A-polynomials and colored polynomial invariants of knots, WKB analysis, and quantization of Hitchin moduli spaces. In addition to establishing these topics, the volume includes survey papers on the most recent key accomplishments: discovery of the unexpected relation to semi-simple cohomological field theories and a solution to the remodeling conjecture. It also provides a glimpse into the future research direction; for example, connections with the Airy structures, modular functors, Hurwitz-Frobenius manifolds, and ELSV-type formulas.

Frontiers in Geometry and Topology

Frontiers in Geometry and Topology
Author :
Publisher : American Mathematical Society
Total Pages : 320
Release :
ISBN-10 : 9781470470876
ISBN-13 : 147047087X
Rating : 4/5 (76 Downloads)

Book Synopsis Frontiers in Geometry and Topology by : Paul M. N. Feehan

Download or read book Frontiers in Geometry and Topology written by Paul M. N. Feehan and published by American Mathematical Society. This book was released on 2024-07-19 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the proceedings of the summer school and research conference “Frontiers in Geometry and Topology”, celebrating the sixtieth birthday of Tomasz Mrowka, which was held from August 1–12, 2022, at the Abdus Salam International Centre for Theoretical Physics (ICTP). The summer school featured ten lecturers and the research conference featured twenty-three speakers covering a range of topics. A common thread, reflecting Mrowka's own work, was the rich interplay among the fields of analysis, geometry, and topology. Articles in this volume cover topics including knot theory; the topology of three and four-dimensional manifolds; instanton, monopole, and Heegaard Floer homologies; Khovanov homology; and pseudoholomorphic curve theory.

Integrability, Quantization, and Geometry: II. Quantum Theories and Algebraic Geometry

Integrability, Quantization, and Geometry: II. Quantum Theories and Algebraic Geometry
Author :
Publisher : American Mathematical Soc.
Total Pages : 480
Release :
ISBN-10 : 9781470455927
ISBN-13 : 1470455927
Rating : 4/5 (27 Downloads)

Book Synopsis Integrability, Quantization, and Geometry: II. Quantum Theories and Algebraic Geometry by : Sergey Novikov

Download or read book Integrability, Quantization, and Geometry: II. Quantum Theories and Algebraic Geometry written by Sergey Novikov and published by American Mathematical Soc.. This book was released on 2021-04-12 with total page 480 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a collection of articles written in memory of Boris Dubrovin (1950–2019). The authors express their admiration for his remarkable personality and for the contributions he made to mathematical physics. For many of the authors, Dubrovin was a friend, colleague, inspiring mentor, and teacher. The contributions to this collection of papers are split into two parts: “Integrable Systems” and “Quantum Theories and Algebraic Geometry”, reflecting the areas of main scientific interests of Dubrovin. Chronologically, these interests may be divided into several parts: integrable systems, integrable systems of hydrodynamic type, WDVV equations (Frobenius manifolds), isomonodromy equations (flat connections), and quantum cohomology. The articles included in the first part are more or less directly devoted to these areas (primarily with the first three listed above). The second part contains articles on quantum theories and algebraic geometry and is less directly connected with Dubrovin's early interests.

Representations of Reductive Groups

Representations of Reductive Groups
Author :
Publisher : American Mathematical Soc.
Total Pages : 466
Release :
ISBN-10 : 9781470442842
ISBN-13 : 1470442841
Rating : 4/5 (42 Downloads)

Book Synopsis Representations of Reductive Groups by : Avraham Aizenbud

Download or read book Representations of Reductive Groups written by Avraham Aizenbud and published by American Mathematical Soc.. This book was released on 2019-02-20 with total page 466 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the proceedings of the Conference on Representation Theory and Algebraic Geometry, held in honor of Joseph Bernstein, from June 11–16, 2017, at the Weizmann Institute of Science and The Hebrew University of Jerusalem. The topics reflect the decisive and diverse impact of Bernstein on representation theory in its broadest scope. The themes include representations of p -adic groups and Hecke algebras in all characteristics, representations of real groups and supergroups, theta correspondence, and automorphic forms.

Open Problems in Algebraic Combinatorics

Open Problems in Algebraic Combinatorics
Author :
Publisher : American Mathematical Society
Total Pages : 382
Release :
ISBN-10 : 9781470473334
ISBN-13 : 147047333X
Rating : 4/5 (34 Downloads)

Book Synopsis Open Problems in Algebraic Combinatorics by : Christine Berkesch

Download or read book Open Problems in Algebraic Combinatorics written by Christine Berkesch and published by American Mathematical Society. This book was released on 2024-08-21 with total page 382 pages. Available in PDF, EPUB and Kindle. Book excerpt: In their preface, the editors describe algebraic combinatorics as the area of combinatorics concerned with exact, as opposed to approximate, results and which puts emphasis on interaction with other areas of mathematics, such as algebra, topology, geometry, and physics. It is a vibrant area, which saw several major developments in recent years. The goal of the 2022 conference Open Problems in Algebraic Combinatorics 2022 was to provide a forum for exchanging promising new directions and ideas. The current volume includes contributions coming from the talks at the conference, as well as a few other contributions written specifically for this volume. The articles cover the majority of topics in algebraic combinatorics with the aim of presenting recent important research results and also important open problems and conjectures encountered in this research. The editors hope that this book will facilitate the exchange of ideas in algebraic combinatorics.

Categorical, Combinatorial and Geometric Representation Theory and Related Topics

Categorical, Combinatorial and Geometric Representation Theory and Related Topics
Author :
Publisher : American Mathematical Society
Total Pages : 536
Release :
ISBN-10 : 9781470471170
ISBN-13 : 1470471175
Rating : 4/5 (70 Downloads)

Book Synopsis Categorical, Combinatorial and Geometric Representation Theory and Related Topics by : Pramod N. Achar

Download or read book Categorical, Combinatorial and Geometric Representation Theory and Related Topics written by Pramod N. Achar and published by American Mathematical Society. This book was released on 2024-07-11 with total page 536 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the third Proceedings of the Southeastern Lie Theory Workshop Series covering years 2015–21. During this time five workshops on different aspects of Lie theory were held at North Carolina State University in October 2015; University of Virginia in May 2016; University of Georgia in June 2018; Louisiana State University in May 2019; and College of Charleston in October 2021. Some of the articles by experts in the field describe recent developments while others include new results in categorical, combinatorial, and geometric representation theory of algebraic groups, Lie (super) algebras, and quantum groups, as well as on some related topics. The survey articles will be beneficial to junior researchers. This book will be useful to any researcher working in Lie theory and related areas.

Nine Mathematical Challenges: An Elucidation

Nine Mathematical Challenges: An Elucidation
Author :
Publisher : American Mathematical Soc.
Total Pages : 221
Release :
ISBN-10 : 9781470454906
ISBN-13 : 1470454904
Rating : 4/5 (06 Downloads)

Book Synopsis Nine Mathematical Challenges: An Elucidation by : A. Kechris

Download or read book Nine Mathematical Challenges: An Elucidation written by A. Kechris and published by American Mathematical Soc.. This book was released on 2021-09-24 with total page 221 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume stems from the Linde Hall Inaugural Math Symposium, held from February 22–24, 2019, at California Institute of Technology, Pasadena, California. The content isolates and discusses nine mathematical problems, or sets of problems, in a deep way, but starting from scratch. Included among them are the well-known problems of the classification of finite groups, the Navier-Stokes equations, the Birch and Swinnerton-Dyer conjecture, and the continuum hypothesis. The other five problems, also of substantial importance, concern the Lieb–Thirring inequalities, the equidistribution problems in number theory, surface bundles, ramification in covers and curves, and the gap and type problems in Fourier analysis. The problems are explained succinctly, with a discussion of what is known and an elucidation of the outstanding issues. An attempt is made to appeal to a wide audience, both in terms of the field of expertise and the level of the reader.