Visual Differential Geometry and Forms

Visual Differential Geometry and Forms
Author :
Publisher : Princeton University Press
Total Pages : 530
Release :
ISBN-10 : 9780691203706
ISBN-13 : 0691203709
Rating : 4/5 (06 Downloads)

Book Synopsis Visual Differential Geometry and Forms by : Tristan Needham

Download or read book Visual Differential Geometry and Forms written by Tristan Needham and published by Princeton University Press. This book was released on 2021-07-13 with total page 530 pages. Available in PDF, EPUB and Kindle. Book excerpt: An inviting, intuitive, and visual exploration of differential geometry and forms Visual Differential Geometry and Forms fulfills two principal goals. In the first four acts, Tristan Needham puts the geometry back into differential geometry. Using 235 hand-drawn diagrams, Needham deploys Newton’s geometrical methods to provide geometrical explanations of the classical results. In the fifth act, he offers the first undergraduate introduction to differential forms that treats advanced topics in an intuitive and geometrical manner. Unique features of the first four acts include: four distinct geometrical proofs of the fundamentally important Global Gauss-Bonnet theorem, providing a stunning link between local geometry and global topology; a simple, geometrical proof of Gauss’s famous Theorema Egregium; a complete geometrical treatment of the Riemann curvature tensor of an n-manifold; and a detailed geometrical treatment of Einstein’s field equation, describing gravity as curved spacetime (General Relativity), together with its implications for gravitational waves, black holes, and cosmology. The final act elucidates such topics as the unification of all the integral theorems of vector calculus; the elegant reformulation of Maxwell’s equations of electromagnetism in terms of 2-forms; de Rham cohomology; differential geometry via Cartan’s method of moving frames; and the calculation of the Riemann tensor using curvature 2-forms. Six of the seven chapters of Act V can be read completely independently from the rest of the book. Requiring only basic calculus and geometry, Visual Differential Geometry and Forms provocatively rethinks the way this important area of mathematics should be considered and taught.

Visual Differential Geometry and Forms

Visual Differential Geometry and Forms
Author :
Publisher : Princeton University Press
Total Pages : 530
Release :
ISBN-10 : 9780691203690
ISBN-13 : 0691203695
Rating : 4/5 (90 Downloads)

Book Synopsis Visual Differential Geometry and Forms by : Tristan Needham

Download or read book Visual Differential Geometry and Forms written by Tristan Needham and published by Princeton University Press. This book was released on 2021-07-13 with total page 530 pages. Available in PDF, EPUB and Kindle. Book excerpt: An inviting, intuitive, and visual exploration of differential geometry and forms Visual Differential Geometry and Forms fulfills two principal goals. In the first four acts, Tristan Needham puts the geometry back into differential geometry. Using 235 hand-drawn diagrams, Needham deploys Newton’s geometrical methods to provide geometrical explanations of the classical results. In the fifth act, he offers the first undergraduate introduction to differential forms that treats advanced topics in an intuitive and geometrical manner. Unique features of the first four acts include: four distinct geometrical proofs of the fundamentally important Global Gauss-Bonnet theorem, providing a stunning link between local geometry and global topology; a simple, geometrical proof of Gauss’s famous Theorema Egregium; a complete geometrical treatment of the Riemann curvature tensor of an n-manifold; and a detailed geometrical treatment of Einstein’s field equation, describing gravity as curved spacetime (General Relativity), together with its implications for gravitational waves, black holes, and cosmology. The final act elucidates such topics as the unification of all the integral theorems of vector calculus; the elegant reformulation of Maxwell’s equations of electromagnetism in terms of 2-forms; de Rham cohomology; differential geometry via Cartan’s method of moving frames; and the calculation of the Riemann tensor using curvature 2-forms. Six of the seven chapters of Act V can be read completely independently from the rest of the book. Requiring only basic calculus and geometry, Visual Differential Geometry and Forms provocatively rethinks the way this important area of mathematics should be considered and taught.

A Visual Introduction to Differential Forms and Calculus on Manifolds

A Visual Introduction to Differential Forms and Calculus on Manifolds
Author :
Publisher : Springer
Total Pages : 470
Release :
ISBN-10 : 9783319969923
ISBN-13 : 3319969927
Rating : 4/5 (23 Downloads)

Book Synopsis A Visual Introduction to Differential Forms and Calculus on Manifolds by : Jon Pierre Fortney

Download or read book A Visual Introduction to Differential Forms and Calculus on Manifolds written by Jon Pierre Fortney and published by Springer. This book was released on 2018-11-03 with total page 470 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explains and helps readers to develop geometric intuition as it relates to differential forms. It includes over 250 figures to aid understanding and enable readers to visualize the concepts being discussed. The author gradually builds up to the basic ideas and concepts so that definitions, when made, do not appear out of nowhere, and both the importance and role that theorems play is evident as or before they are presented. With a clear writing style and easy-to- understand motivations for each topic, this book is primarily aimed at second- or third-year undergraduate math and physics students with a basic knowledge of vector calculus and linear algebra.

Visual Complex Analysis

Visual Complex Analysis
Author :
Publisher : Oxford University Press
Total Pages : 620
Release :
ISBN-10 : 0198534469
ISBN-13 : 9780198534464
Rating : 4/5 (69 Downloads)

Book Synopsis Visual Complex Analysis by : Tristan Needham

Download or read book Visual Complex Analysis written by Tristan Needham and published by Oxford University Press. This book was released on 1997 with total page 620 pages. Available in PDF, EPUB and Kindle. Book excerpt: This radical first course on complex analysis brings a beautiful and powerful subject to life by consistently using geometry (not calculation) as the means of explanation. Aimed at undergraduate students in mathematics, physics, and engineering, the book's intuitive explanations, lack of advanced prerequisites, and consciously user-friendly prose style will help students to master the subject more readily than was previously possible. The key to this is the book's use of new geometric arguments in place of the standard calculational ones. These geometric arguments are communicated with the aid of hundreds of diagrams of a standard seldom encountered in mathematical works. A new approach to a classical topic, this work will be of interest to students in mathematics, physics, and engineering, as well as to professionals in these fields.

Applied Differential Geometry

Applied Differential Geometry
Author :
Publisher : Cambridge University Press
Total Pages : 440
Release :
ISBN-10 : 0521269296
ISBN-13 : 9780521269292
Rating : 4/5 (96 Downloads)

Book Synopsis Applied Differential Geometry by : William L. Burke

Download or read book Applied Differential Geometry written by William L. Burke and published by Cambridge University Press. This book was released on 1985-05-31 with total page 440 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a self-contained introductory textbook on the calculus of differential forms and modern differential geometry. The intended audience is physicists, so the author emphasises applications and geometrical reasoning in order to give results and concepts a precise but intuitive meaning without getting bogged down in analysis. The large number of diagrams helps elucidate the fundamental ideas. Mathematical topics covered include differentiable manifolds, differential forms and twisted forms, the Hodge star operator, exterior differential systems and symplectic geometry. All of the mathematics is motivated and illustrated by useful physical examples.

Differential Geometry

Differential Geometry
Author :
Publisher : Courier Corporation
Total Pages : 384
Release :
ISBN-10 : 9780486318622
ISBN-13 : 0486318621
Rating : 4/5 (22 Downloads)

Book Synopsis Differential Geometry by : Erwin Kreyszig

Download or read book Differential Geometry written by Erwin Kreyszig and published by Courier Corporation. This book was released on 2013-04-26 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introductory textbook on the differential geometry of curves and surfaces in 3-dimensional Euclidean space, presented in its simplest, most essential form. With problems and solutions. Includes 99 illustrations.

An Introduction to Manifolds

An Introduction to Manifolds
Author :
Publisher : Springer Science & Business Media
Total Pages : 426
Release :
ISBN-10 : 9781441974006
ISBN-13 : 1441974008
Rating : 4/5 (06 Downloads)

Book Synopsis An Introduction to Manifolds by : Loring W. Tu

Download or read book An Introduction to Manifolds written by Loring W. Tu and published by Springer Science & Business Media. This book was released on 2010-10-05 with total page 426 pages. Available in PDF, EPUB and Kindle. Book excerpt: Manifolds, the higher-dimensional analogs of smooth curves and surfaces, are fundamental objects in modern mathematics. Combining aspects of algebra, topology, and analysis, manifolds have also been applied to classical mechanics, general relativity, and quantum field theory. In this streamlined introduction to the subject, the theory of manifolds is presented with the aim of helping the reader achieve a rapid mastery of the essential topics. By the end of the book the reader should be able to compute, at least for simple spaces, one of the most basic topological invariants of a manifold, its de Rham cohomology. Along the way, the reader acquires the knowledge and skills necessary for further study of geometry and topology. The requisite point-set topology is included in an appendix of twenty pages; other appendices review facts from real analysis and linear algebra. Hints and solutions are provided to many of the exercises and problems. This work may be used as the text for a one-semester graduate or advanced undergraduate course, as well as by students engaged in self-study. Requiring only minimal undergraduate prerequisites, 'Introduction to Manifolds' is also an excellent foundation for Springer's GTM 82, 'Differential Forms in Algebraic Topology'.