Understanding Big Data Scalability

Understanding Big Data Scalability
Author :
Publisher : Pearson Education
Total Pages : 123
Release :
ISBN-10 : 9780133598704
ISBN-13 : 0133598705
Rating : 4/5 (04 Downloads)

Book Synopsis Understanding Big Data Scalability by : Cory Isaacson

Download or read book Understanding Big Data Scalability written by Cory Isaacson and published by Pearson Education. This book was released on 2014 with total page 123 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Big Data

Big Data
Author :
Publisher : Simon and Schuster
Total Pages : 481
Release :
ISBN-10 : 9781638351108
ISBN-13 : 1638351104
Rating : 4/5 (08 Downloads)

Book Synopsis Big Data by : James Warren

Download or read book Big Data written by James Warren and published by Simon and Schuster. This book was released on 2015-04-29 with total page 481 pages. Available in PDF, EPUB and Kindle. Book excerpt: Summary Big Data teaches you to build big data systems using an architecture that takes advantage of clustered hardware along with new tools designed specifically to capture and analyze web-scale data. It describes a scalable, easy-to-understand approach to big data systems that can be built and run by a small team. Following a realistic example, this book guides readers through the theory of big data systems, how to implement them in practice, and how to deploy and operate them once they're built. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Book Web-scale applications like social networks, real-time analytics, or e-commerce sites deal with a lot of data, whose volume and velocity exceed the limits of traditional database systems. These applications require architectures built around clusters of machines to store and process data of any size, or speed. Fortunately, scale and simplicity are not mutually exclusive. Big Data teaches you to build big data systems using an architecture designed specifically to capture and analyze web-scale data. This book presents the Lambda Architecture, a scalable, easy-to-understand approach that can be built and run by a small team. You'll explore the theory of big data systems and how to implement them in practice. In addition to discovering a general framework for processing big data, you'll learn specific technologies like Hadoop, Storm, and NoSQL databases. This book requires no previous exposure to large-scale data analysis or NoSQL tools. Familiarity with traditional databases is helpful. What's Inside Introduction to big data systems Real-time processing of web-scale data Tools like Hadoop, Cassandra, and Storm Extensions to traditional database skills About the Authors Nathan Marz is the creator of Apache Storm and the originator of the Lambda Architecture for big data systems. James Warren is an analytics architect with a background in machine learning and scientific computing. Table of Contents A new paradigm for Big Data PART 1 BATCH LAYER Data model for Big Data Data model for Big Data: Illustration Data storage on the batch layer Data storage on the batch layer: Illustration Batch layer Batch layer: Illustration An example batch layer: Architecture and algorithms An example batch layer: Implementation PART 2 SERVING LAYER Serving layer Serving layer: Illustration PART 3 SPEED LAYER Realtime views Realtime views: Illustration Queuing and stream processing Queuing and stream processing: Illustration Micro-batch stream processing Micro-batch stream processing: Illustration Lambda Architecture in depth

Scalable Big Data Architecture

Scalable Big Data Architecture
Author :
Publisher : Apress
Total Pages : 147
Release :
ISBN-10 : 9781484213261
ISBN-13 : 1484213262
Rating : 4/5 (61 Downloads)

Book Synopsis Scalable Big Data Architecture by : Bahaaldine Azarmi

Download or read book Scalable Big Data Architecture written by Bahaaldine Azarmi and published by Apress. This book was released on 2015-12-31 with total page 147 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book highlights the different types of data architecture and illustrates the many possibilities hidden behind the term "Big Data", from the usage of No-SQL databases to the deployment of stream analytics architecture, machine learning, and governance. Scalable Big Data Architecture covers real-world, concrete industry use cases that leverage complex distributed applications , which involve web applications, RESTful API, and high throughput of large amount of data stored in highly scalable No-SQL data stores such as Couchbase and Elasticsearch. This book demonstrates how data processing can be done at scale from the usage of NoSQL datastores to the combination of Big Data distribution. When the data processing is too complex and involves different processing topology like long running jobs, stream processing, multiple data sources correlation, and machine learning, it’s often necessary to delegate the load to Hadoop or Spark and use the No-SQL to serve processed data in real time. This book shows you how to choose a relevant combination of big data technologies available within the Hadoop ecosystem. It focuses on processing long jobs, architecture, stream data patterns, log analysis, and real time analytics. Every pattern is illustrated with practical examples, which use the different open sourceprojects such as Logstash, Spark, Kafka, and so on. Traditional data infrastructures are built for digesting and rendering data synthesis and analytics from large amount of data. This book helps you to understand why you should consider using machine learning algorithms early on in the project, before being overwhelmed by constraints imposed by dealing with the high throughput of Big data. Scalable Big Data Architecture is for developers, data architects, and data scientists looking for a better understanding of how to choose the most relevant pattern for a Big Data project and which tools to integrate into that pattern.

Understanding Big Data: Analytics for Enterprise Class Hadoop and Streaming Data

Understanding Big Data: Analytics for Enterprise Class Hadoop and Streaming Data
Author :
Publisher : McGraw Hill Professional
Total Pages : 176
Release :
ISBN-10 : 9780071790543
ISBN-13 : 0071790543
Rating : 4/5 (43 Downloads)

Book Synopsis Understanding Big Data: Analytics for Enterprise Class Hadoop and Streaming Data by : Paul Zikopoulos

Download or read book Understanding Big Data: Analytics for Enterprise Class Hadoop and Streaming Data written by Paul Zikopoulos and published by McGraw Hill Professional. This book was released on 2011-10-22 with total page 176 pages. Available in PDF, EPUB and Kindle. Book excerpt: Big Data represents a new era in data exploration and utilization, and IBM is uniquely positioned to help clients navigate this transformation. This book reveals how IBM is leveraging open source Big Data technology, infused with IBM technologies, to deliver a robust, secure, highly available, enterprise-class Big Data platform. The three defining characteristics of Big Data--volume, variety, and velocity--are discussed. You'll get a primer on Hadoop and how IBM is hardening it for the enterprise, and learn when to leverage IBM InfoSphere BigInsights (Big Data at rest) and IBM InfoSphere Streams (Big Data in motion) technologies. Industry use cases are also included in this practical guide. Learn how IBM hardens Hadoop for enterprise-class scalability and reliability Gain insight into IBM's unique in-motion and at-rest Big Data analytics platform Learn tips and tricks for Big Data use cases and solutions Get a quick Hadoop primer

Understanding Big Data

Understanding Big Data
Author :
Publisher : Rudra Publications
Total Pages : 232
Release :
ISBN-10 : 9788196047252
ISBN-13 : 8196047258
Rating : 4/5 (52 Downloads)

Book Synopsis Understanding Big Data by : Prof. (Dr.) R. K. Pandey

Download or read book Understanding Big Data written by Prof. (Dr.) R. K. Pandey and published by Rudra Publications. This book was released on with total page 232 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book titled 'Understanding Big Data' covers complete syllabus of Big Data prescribed by Technical University of Uttar Pradesh and other Universities also. The Book contains better understanding of Big Data concept. This Book will also guide on the job reference for IT practitioners in mobile computing environments.

Big Data For Dummies

Big Data For Dummies
Author :
Publisher : John Wiley & Sons
Total Pages : 336
Release :
ISBN-10 : 9781118644171
ISBN-13 : 1118644174
Rating : 4/5 (71 Downloads)

Book Synopsis Big Data For Dummies by : Judith S. Hurwitz

Download or read book Big Data For Dummies written by Judith S. Hurwitz and published by John Wiley & Sons. This book was released on 2013-04-02 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: Find the right big data solution for your business or organization Big data management is one of the major challenges facing business, industry, and not-for-profit organizations. Data sets such as customer transactions for a mega-retailer, weather patterns monitored by meteorologists, or social network activity can quickly outpace the capacity of traditional data management tools. If you need to develop or manage big data solutions, you'll appreciate how these four experts define, explain, and guide you through this new and often confusing concept. You'll learn what it is, why it matters, and how to choose and implement solutions that work. Effectively managing big data is an issue of growing importance to businesses, not-for-profit organizations, government, and IT professionals Authors are experts in information management, big data, and a variety of solutions Explains big data in detail and discusses how to select and implement a solution, security concerns to consider, data storage and presentation issues, analytics, and much more Provides essential information in a no-nonsense, easy-to-understand style that is empowering Big Data For Dummies cuts through the confusion and helps you take charge of big data solutions for your organization.

Frontiers in Massive Data Analysis

Frontiers in Massive Data Analysis
Author :
Publisher : National Academies Press
Total Pages : 191
Release :
ISBN-10 : 9780309287814
ISBN-13 : 0309287812
Rating : 4/5 (14 Downloads)

Book Synopsis Frontiers in Massive Data Analysis by : National Research Council

Download or read book Frontiers in Massive Data Analysis written by National Research Council and published by National Academies Press. This book was released on 2013-09-03 with total page 191 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data mining of massive data sets is transforming the way we think about crisis response, marketing, entertainment, cybersecurity and national intelligence. Collections of documents, images, videos, and networks are being thought of not merely as bit strings to be stored, indexed, and retrieved, but as potential sources of discovery and knowledge, requiring sophisticated analysis techniques that go far beyond classical indexing and keyword counting, aiming to find relational and semantic interpretations of the phenomena underlying the data. Frontiers in Massive Data Analysis examines the frontier of analyzing massive amounts of data, whether in a static database or streaming through a system. Data at that scale-terabytes and petabytes-is increasingly common in science (e.g., particle physics, remote sensing, genomics), Internet commerce, business analytics, national security, communications, and elsewhere. The tools that work to infer knowledge from data at smaller scales do not necessarily work, or work well, at such massive scale. New tools, skills, and approaches are necessary, and this report identifies many of them, plus promising research directions to explore. Frontiers in Massive Data Analysis discusses pitfalls in trying to infer knowledge from massive data, and it characterizes seven major classes of computation that are common in the analysis of massive data. Overall, this report illustrates the cross-disciplinary knowledge-from computer science, statistics, machine learning, and application disciplines-that must be brought to bear to make useful inferences from massive data.