Uncertainty Quantification in Multiscale Materials Modeling

Uncertainty Quantification in Multiscale Materials Modeling
Author :
Publisher : Woodhead Publishing Limited
Total Pages : 604
Release :
ISBN-10 : 9780081029411
ISBN-13 : 0081029411
Rating : 4/5 (11 Downloads)

Book Synopsis Uncertainty Quantification in Multiscale Materials Modeling by : Yan Wang

Download or read book Uncertainty Quantification in Multiscale Materials Modeling written by Yan Wang and published by Woodhead Publishing Limited. This book was released on 2020-03-12 with total page 604 pages. Available in PDF, EPUB and Kindle. Book excerpt: Uncertainty Quantification in Multiscale Materials Modeling provides a complete overview of uncertainty quantification (UQ) in computational materials science. It provides practical tools and methods along with examples of their application to problems in materials modeling. UQ methods are applied to various multiscale models ranging from the nanoscale to macroscale. This book presents a thorough synthesis of the state-of-the-art in UQ methods for materials modeling, including Bayesian inference, surrogate modeling, random fields, interval analysis, and sensitivity analysis, providing insight into the unique characteristics of models framed at each scale, as well as common issues in modeling across scales.

Uncertainty Quantification in Multiscale Materials Modeling

Uncertainty Quantification in Multiscale Materials Modeling
Author :
Publisher : Woodhead Publishing
Total Pages : 606
Release :
ISBN-10 : 9780081029428
ISBN-13 : 008102942X
Rating : 4/5 (28 Downloads)

Book Synopsis Uncertainty Quantification in Multiscale Materials Modeling by : Yan Wang

Download or read book Uncertainty Quantification in Multiscale Materials Modeling written by Yan Wang and published by Woodhead Publishing. This book was released on 2020-03-10 with total page 606 pages. Available in PDF, EPUB and Kindle. Book excerpt: Uncertainty Quantification in Multiscale Materials Modeling provides a complete overview of uncertainty quantification (UQ) in computational materials science. It provides practical tools and methods along with examples of their application to problems in materials modeling. UQ methods are applied to various multiscale models ranging from the nanoscale to macroscale. This book presents a thorough synthesis of the state-of-the-art in UQ methods for materials modeling, including Bayesian inference, surrogate modeling, random fields, interval analysis, and sensitivity analysis, providing insight into the unique characteristics of models framed at each scale, as well as common issues in modeling across scales. - Synthesizes available UQ methods for materials modeling - Provides practical tools and examples for problem solving in modeling material behavior across various length scales - Demonstrates UQ in density functional theory, molecular dynamics, kinetic Monte Carlo, phase field, finite element method, multiscale modeling, and to support decision making in materials design - Covers quantum, atomistic, mesoscale, and engineering structure-level modeling and simulation

Uncertainty Quantification

Uncertainty Quantification
Author :
Publisher : Springer
Total Pages : 344
Release :
ISBN-10 : 9783319543390
ISBN-13 : 3319543393
Rating : 4/5 (90 Downloads)

Book Synopsis Uncertainty Quantification by : Christian Soize

Download or read book Uncertainty Quantification written by Christian Soize and published by Springer. This book was released on 2017-04-24 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the fundamental notions and advanced mathematical tools in the stochastic modeling of uncertainties and their quantification for large-scale computational models in sciences and engineering. In particular, it focuses in parametric uncertainties, and non-parametric uncertainties with applications from the structural dynamics and vibroacoustics of complex mechanical systems, from micromechanics and multiscale mechanics of heterogeneous materials. Resulting from a course developed by the author, the book begins with a description of the fundamental mathematical tools of probability and statistics that are directly useful for uncertainty quantification. It proceeds with a well carried out description of some basic and advanced methods for constructing stochastic models of uncertainties, paying particular attention to the problem of calibrating and identifying a stochastic model of uncertainty when experimental data is available. This book is intended to be a graduate-level textbook for students as well as professionals interested in the theory, computation, and applications of risk and prediction in science and engineering fields.

Uncertainty Quantification in Laminated Composites

Uncertainty Quantification in Laminated Composites
Author :
Publisher : CRC Press
Total Pages : 375
Release :
ISBN-10 : 9781498784467
ISBN-13 : 1498784461
Rating : 4/5 (67 Downloads)

Book Synopsis Uncertainty Quantification in Laminated Composites by : Sudip Dey

Download or read book Uncertainty Quantification in Laminated Composites written by Sudip Dey and published by CRC Press. This book was released on 2018-09-19 with total page 375 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the last few decades, uncertainty quantification in composite materials and structures has gained a lot of attention from the research community as a result of industrial requirements. This book presents computationally efficient uncertainty quantification schemes following meta-model-based approaches for stochasticity in material and geometric parameters of laminated composite structures. Several metamodels have been studied and comparative results have been presented for different static and dynamic responses. Results for sensitivity analyses are provided for a comprehensive coverage of the relative importance of different material and geometric parameters in the global structural responses.

Integrated Design of Multiscale, Multifunctional Materials and Products

Integrated Design of Multiscale, Multifunctional Materials and Products
Author :
Publisher : Butterworth-Heinemann
Total Pages : 393
Release :
ISBN-10 : 9780080952208
ISBN-13 : 0080952208
Rating : 4/5 (08 Downloads)

Book Synopsis Integrated Design of Multiscale, Multifunctional Materials and Products by : David L. McDowell

Download or read book Integrated Design of Multiscale, Multifunctional Materials and Products written by David L. McDowell and published by Butterworth-Heinemann. This book was released on 2009-09-30 with total page 393 pages. Available in PDF, EPUB and Kindle. Book excerpt: Integrated Design of Multiscale, Multifunctional Materials and Products is the first of its type to consider not only design of materials, but concurrent design of materials and products. In other words, materials are not just selected on the basis of properties, but the composition and/or microstructure iw designed to satisfy specific ranged sets of performance requirements. This book presents the motivation for pursuing concurrent design of materials and products, thoroughly discussing the details of multiscale modeling and multilevel robust design and provides details of the design methods/strategies along with selected examples of designing material attributes for specified system performance. It is intended as a monograph to serve as a foundational reference for instructors of courses at the senior and introductory graduate level in departments of materials science and engineering, mechanical engineering, aerospace engineering and civil engineering who are interested in next generation systems-based design of materials. - First of its kind to consider not only design of materials, but concurrent design of materials and products - Treatment of uncertainty via robust design of materials - Integrates the "materials by design approach" of Olson/Ques Tek LLC with the "materials selection" approach of Ashby/Granta - Distinquishes the processes of concurrent design of materials and products as an overall systems design problem from the field of multiscale modeling - Systematic mathematical algorithms and methods are introduced for robust design of materials, rather than ad hoc heuristics--it is oriented towards a true systems approach to design of materials and products

Handbook of Uncertainty Quantification

Handbook of Uncertainty Quantification
Author :
Publisher : Springer
Total Pages : 0
Release :
ISBN-10 : 331912384X
ISBN-13 : 9783319123844
Rating : 4/5 (4X Downloads)

Book Synopsis Handbook of Uncertainty Quantification by : Roger Ghanem

Download or read book Handbook of Uncertainty Quantification written by Roger Ghanem and published by Springer. This book was released on 2016-05-08 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The topic of Uncertainty Quantification (UQ) has witnessed massive developments in response to the promise of achieving risk mitigation through scientific prediction. It has led to the integration of ideas from mathematics, statistics and engineering being used to lend credence to predictive assessments of risk but also to design actions (by engineers, scientists and investors) that are consistent with risk aversion. The objective of this Handbook is to facilitate the dissemination of the forefront of UQ ideas to their audiences. We recognize that these audiences are varied, with interests ranging from theory to application, and from research to development and even execution.

Multiscale Methods

Multiscale Methods
Author :
Publisher : Oxford University Press
Total Pages : 631
Release :
ISBN-10 : 9780199233854
ISBN-13 : 0199233853
Rating : 4/5 (54 Downloads)

Book Synopsis Multiscale Methods by : Jacob Fish

Download or read book Multiscale Methods written by Jacob Fish and published by Oxford University Press. This book was released on 2010 with total page 631 pages. Available in PDF, EPUB and Kindle. Book excerpt: Small scale features and processes occurring at nanometer and femtosecond scales have a profound impact on what happens at a larger scale and over an extensive period of time. The primary objective of this volume is to reflect the state-of-the-art in multiscale mathematics, modeling, and simulations and to address the following barriers: What is the information that needs to be transferred from one model or scale to another and what physical principles must be satisfied during thetransfer of information? What are the optimal ways to achieve such transfer of information? How can variability of physical parameters at multiple scales be quantified and how can it be accounted for to ensure design robustness?The multiscale approaches in space and time presented in this volume are grouped into two main categories: information-passing and concurrent. In the concurrent approaches various scales are simultaneously resolved, whereas in the information-passing methods the fine scale is modeled and its gross response is infused into the continuum scale. The issue of reliability of multiscale modeling and simulation tools which focus on a hierarchy of multiscale models and an a posteriori model of errorestimation including uncertainty quantification, is discussed in several chapters. Component software that can be effectively combined to address a wide range of multiscale simulations is also described. Applications range from advanced materials to nanoelectromechanical systems (NEMS), biologicalsystems, and nanoporous catalysts where physical phenomena operates across 12 orders of magnitude in time scales and 10 orders of magnitude in spatial scales.This volume is a valuable reference book for scientists, engineers and graduate students practicing in traditional engineering and science disciplines as well as in emerging fields of nanotechnology, biotechnology, microelectronics and energy.