Tracking and Preventing Diseases with Artificial Intelligence

Tracking and Preventing Diseases with Artificial Intelligence
Author :
Publisher : Springer Nature
Total Pages : 266
Release :
ISBN-10 : 9783030767327
ISBN-13 : 3030767329
Rating : 4/5 (27 Downloads)

Book Synopsis Tracking and Preventing Diseases with Artificial Intelligence by : Mayuri Mehta

Download or read book Tracking and Preventing Diseases with Artificial Intelligence written by Mayuri Mehta and published by Springer Nature. This book was released on 2021 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents an overview of how machine learning and data mining techniques are used for tracking and preventing diseases. It covers several aspects such as stress level identification of a person from his/her speech, automatic diagnosis of disease from X-ray images, intelligent diagnosis of Glaucoma from clinical eye examination data, prediction of protein-coding genes from big genome data, disease detection through microscopic analysis of blood cells, information retrieval from electronic medical record using named entity recognition approaches, and prediction of drug-target interactions. The book is suitable for computer scientists having a bachelor degree in computer science. The book is an ideal resource as a reference book for teaching a graduate course on AI for Medicine or AI for Health care. Researchers working in the multidisciplinary areas use this book to discover the current developments. Besides its use in academia, this book provides enough details about the state-of-the-art algorithms addressing various biomedical domains, so that it could be used by industry practitioners who want to implement AI techniques to analyze the diseases. Medical institutions use this book as reference material and give tutorials to medical experts on how the advanced AI and ML techniques contribute to the diagnosis and prediction of the diseases.

Artificial Intelligence in Healthcare

Artificial Intelligence in Healthcare
Author :
Publisher : Academic Press
Total Pages : 385
Release :
ISBN-10 : 9780128184394
ISBN-13 : 0128184396
Rating : 4/5 (94 Downloads)

Book Synopsis Artificial Intelligence in Healthcare by : Adam Bohr

Download or read book Artificial Intelligence in Healthcare written by Adam Bohr and published by Academic Press. This book was released on 2020-06-21 with total page 385 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. - Highlights different data techniques in healthcare data analysis, including machine learning and data mining - Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks - Includes applications and case studies across all areas of AI in healthcare data

Artificial Intelligence in Ophthalmology

Artificial Intelligence in Ophthalmology
Author :
Publisher : Springer Nature
Total Pages : 280
Release :
ISBN-10 : 9783030786014
ISBN-13 : 3030786013
Rating : 4/5 (14 Downloads)

Book Synopsis Artificial Intelligence in Ophthalmology by : Andrzej Grzybowski

Download or read book Artificial Intelligence in Ophthalmology written by Andrzej Grzybowski and published by Springer Nature. This book was released on 2021-10-13 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a wide-ranging overview of artificial intelligence (AI), machine learning (ML) and deep learning (DL) algorithms in ophthalmology. Expertly written chapters examine AI in age-related macular degeneration, glaucoma, retinopathy of prematurity and diabetic retinopathy screening. AI perspectives, systems and limitations are all carefully assessed throughout the book as well as the technical aspects of DL systems for retinal diseases including the application of Google DeepMind, the Singapore algorithm, and the Johns Hopkins algorithm. Artificial Intelligence in Ophthalmology meets the need for a resource that reviews the benefits and pitfalls of AI, ML and DL in ophthalmology. Ophthalmologists, optometrists, eye-care workers, neurologists, cardiologists, internal medicine specialists, AI engineers and IT specialists with an interest in how AI can help with early diagnosis and monitoring treatment in ophthalmic patients will find this book to be an indispensable guide to an evolving area of healthcare technology.

Machine Learning and Data Analytics for Predicting, Managing, and Monitoring Disease

Machine Learning and Data Analytics for Predicting, Managing, and Monitoring Disease
Author :
Publisher : Medical Information Science Reference
Total Pages : 264
Release :
ISBN-10 : 1799871886
ISBN-13 : 9781799871880
Rating : 4/5 (86 Downloads)

Book Synopsis Machine Learning and Data Analytics for Predicting, Managing, and Monitoring Disease by : Manikant Roy

Download or read book Machine Learning and Data Analytics for Predicting, Managing, and Monitoring Disease written by Manikant Roy and published by Medical Information Science Reference. This book was released on 2021-06-25 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book provides the recent various theoretical frameworks, empirical research and application of advanced analytics methods for disease detection, pandemic management, disease prediction etc. using the data analysis methods and their usages for taking timely decisions for prevention of such spread of pandemic and how people in government, society and administer can use these insights for overall management"--

Human Behaviour Analysis Using Intelligent Systems

Human Behaviour Analysis Using Intelligent Systems
Author :
Publisher : Springer Nature
Total Pages : 205
Release :
ISBN-10 : 9783030351397
ISBN-13 : 3030351394
Rating : 4/5 (97 Downloads)

Book Synopsis Human Behaviour Analysis Using Intelligent Systems by : D. Jude Hemanth

Download or read book Human Behaviour Analysis Using Intelligent Systems written by D. Jude Hemanth and published by Springer Nature. This book was released on 2019-11-20 with total page 205 pages. Available in PDF, EPUB and Kindle. Book excerpt: Human–computer interaction (HCI) is one of the most significant areas of computational intelligence. This book focuses on the human emotion analysis aspects of HCI, highlighting innovative methodologies for emotion analysis by machines/computers and their application areas. The methodologies are presented with numerical results to enable researchers to replicate the work. This multidisciplinary book is useful to researchers and academicians, as well as students wanting to pursue a career in computational intelligence. It can also be used as a handbook, reference book, and a textbook for short courses.

Artificial Intelligence for COVID-19

Artificial Intelligence for COVID-19
Author :
Publisher : Springer Nature
Total Pages : 594
Release :
ISBN-10 : 9783030697440
ISBN-13 : 3030697444
Rating : 4/5 (40 Downloads)

Book Synopsis Artificial Intelligence for COVID-19 by : Diego Oliva

Download or read book Artificial Intelligence for COVID-19 written by Diego Oliva and published by Springer Nature. This book was released on 2021-07-19 with total page 594 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a compilation of the most recent implementation of artificial intelligence methods for solving different problems generated by the COVID-19. The problems addressed came from different fields and not only from medicine. The information contained in the book explores different areas of machine and deep learning, advanced image processing, computational intelligence, IoT, robotics and automation, optimization, mathematical modeling, neural networks, information technology, big data, data processing, data mining, and likewise. Moreover, the chapters include the theory and methodologies used to provide an overview of applying these tools to the useful contribution to help to face the emerging disaster. The book is primarily intended for researchers, decision makers, practitioners, and readers interested in these subject matters. The book is useful also as rich case studies and project proposals for postgraduate courses in those specializations.

Handbook of Research on Disease Prediction Through Data Analytics and Machine Learning

Handbook of Research on Disease Prediction Through Data Analytics and Machine Learning
Author :
Publisher : IGI Global
Total Pages : 586
Release :
ISBN-10 : 9781799827436
ISBN-13 : 1799827437
Rating : 4/5 (36 Downloads)

Book Synopsis Handbook of Research on Disease Prediction Through Data Analytics and Machine Learning by : Rani, Geeta

Download or read book Handbook of Research on Disease Prediction Through Data Analytics and Machine Learning written by Rani, Geeta and published by IGI Global. This book was released on 2020-10-16 with total page 586 pages. Available in PDF, EPUB and Kindle. Book excerpt: By applying data analytics techniques and machine learning algorithms to predict disease, medical practitioners can more accurately diagnose and treat patients. However, researchers face problems in identifying suitable algorithms for pre-processing, transformations, and the integration of clinical data in a single module, as well as seeking different ways to build and evaluate models. The Handbook of Research on Disease Prediction Through Data Analytics and Machine Learning is a pivotal reference source that explores the application of algorithms to making disease predictions through the identification of symptoms and information retrieval from images such as MRIs, ECGs, EEGs, etc. Highlighting a wide range of topics including clinical decision support systems, biomedical image analysis, and prediction models, this book is ideally designed for clinicians, physicians, programmers, computer engineers, IT specialists, data analysts, hospital administrators, researchers, academicians, and graduate and post-graduate students.