Topological Phases of Matter

Topological Phases of Matter
Author :
Publisher : Cambridge University Press
Total Pages : 393
Release :
ISBN-10 : 9781107105539
ISBN-13 : 1107105536
Rating : 4/5 (39 Downloads)

Book Synopsis Topological Phases of Matter by : Roderich Moessner

Download or read book Topological Phases of Matter written by Roderich Moessner and published by Cambridge University Press. This book was released on 2021-04-29 with total page 393 pages. Available in PDF, EPUB and Kindle. Book excerpt: This important graduate level text unites the physical mechanisms behind the phenomena of topological matter within a theoretical framework.

Boundary Physics and Bulk-Boundary Correspondence in Topological Phases of Matter

Boundary Physics and Bulk-Boundary Correspondence in Topological Phases of Matter
Author :
Publisher : Springer Nature
Total Pages : 213
Release :
ISBN-10 : 9783030319601
ISBN-13 : 3030319601
Rating : 4/5 (01 Downloads)

Book Synopsis Boundary Physics and Bulk-Boundary Correspondence in Topological Phases of Matter by : Abhijeet Alase

Download or read book Boundary Physics and Bulk-Boundary Correspondence in Topological Phases of Matter written by Abhijeet Alase and published by Springer Nature. This book was released on 2019-11-20 with total page 213 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis extends our understanding of systems of independent electrons by developing a generalization of Bloch’s Theorem which is applicable whenever translational symmetry is broken solely due to arbitrary boundary conditions. The thesis begins with a historical overview of topological condensed matter physics, placing the work in context, before introducing the generalized form of Bloch's Theorem. A cornerstone of electronic band structure and transport theory in crystalline matter, Bloch's Theorem is generalized via a reformulation of the diagonalization problem in terms of corner-modified block-Toeplitz matrices and, physically, by allowing the crystal momentum to take complex values. This formulation provides exact expressions for all the energy eigenvalues and eigenstates of the single-particle Hamiltonian. By precisely capturing the interplay between bulk and boundary properties, this affords an exact analysis of several prototypical models relevant to symmetry-protected topological phases of matter, including a characterization of zero-energy localized boundary excitations in both topological insulators and superconductors. Notably, in combination with suitable matrix factorization techniques, the generalized Bloch Hamiltonian is also shown to provide a natural starting point for a unified derivation of bulk-boundary correspondence for all symmetry classes in one dimension.

Topological Insulators and Topological Superconductors

Topological Insulators and Topological Superconductors
Author :
Publisher : Princeton University Press
Total Pages : 264
Release :
ISBN-10 : 9781400846733
ISBN-13 : 1400846730
Rating : 4/5 (33 Downloads)

Book Synopsis Topological Insulators and Topological Superconductors by : B. Andrei Bernevig

Download or read book Topological Insulators and Topological Superconductors written by B. Andrei Bernevig and published by Princeton University Press. This book was released on 2013-04-07 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt: This graduate-level textbook is the first pedagogical synthesis of the field of topological insulators and superconductors, one of the most exciting areas of research in condensed matter physics. Presenting the latest developments, while providing all the calculations necessary for a self-contained and complete description of the discipline, it is ideal for graduate students and researchers preparing to work in this area, and it will be an essential reference both within and outside the classroom. The book begins with simple concepts such as Berry phases, Dirac fermions, Hall conductance and its link to topology, and the Hofstadter problem of lattice electrons in a magnetic field. It moves on to explain topological phases of matter such as Chern insulators, two- and three-dimensional topological insulators, and Majorana p-wave wires. Additionally, the book covers zero modes on vortices in topological superconductors, time-reversal topological superconductors, and topological responses/field theory and topological indices. The book also analyzes recent topics in condensed matter theory and concludes by surveying active subfields of research such as insulators with point-group symmetries and the stability of topological semimetals. Problems at the end of each chapter offer opportunities to test knowledge and engage with frontier research issues. Topological Insulators and Topological Superconductors will provide graduate students and researchers with the physical understanding and mathematical tools needed to embark on research in this rapidly evolving field.

Topological Matter

Topological Matter
Author :
Publisher : Springer
Total Pages : 274
Release :
ISBN-10 : 9783319763880
ISBN-13 : 3319763881
Rating : 4/5 (80 Downloads)

Book Synopsis Topological Matter by : Dario Bercioux

Download or read book Topological Matter written by Dario Bercioux and published by Springer. This book was released on 2018-10-03 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers basic and advanced aspects in the field of Topological Matter. The chapters are based on the lectures presented during the Topological Matter School 2017. It provides graduate level content introducing the basic concepts of the field, including an introductory session on group theory and topological classification of matter. Different topological phases such as Weyls semi-metals, Majoranas fermions and topological superconductivity are also covered. A review chapter on the major experimental achievements in the field is also provided. The book is suitable not only for master, graduate and young postdoctoral researchers, but also to senior scientists who want to acquaint themselves with the subject.

Quantum Information Meets Quantum Matter

Quantum Information Meets Quantum Matter
Author :
Publisher : Springer
Total Pages : 372
Release :
ISBN-10 : 9781493990849
ISBN-13 : 1493990845
Rating : 4/5 (49 Downloads)

Book Synopsis Quantum Information Meets Quantum Matter by : Bei Zeng

Download or read book Quantum Information Meets Quantum Matter written by Bei Zeng and published by Springer. This book was released on 2019-03-28 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book approaches condensed matter physics from the perspective of quantum information science, focusing on systems with strong interaction and unconventional order for which the usual condensed matter methods like the Landau paradigm or the free fermion framework break down. Concepts and tools in quantum information science such as entanglement, quantum circuits, and the tensor network representation prove to be highly useful in studying such systems. The goal of this book is to introduce these techniques and show how they lead to a new systematic way of characterizing and classifying quantum phases in condensed matter systems. The first part of the book introduces some basic concepts in quantum information theory which are then used to study the central topic explained in Part II: local Hamiltonians and their ground states. Part III focuses on one of the major new phenomena in strongly interacting systems, the topological order, and shows how it can essentially be defined and characterized in terms of entanglement. Part IV shows that the key entanglement structure of topological states can be captured using the tensor network representation, which provides a powerful tool in the classification of quantum phases. Finally, Part V discusses the exciting prospect at the intersection of quantum information and condensed matter physics – the unification of information and matter. Intended for graduate students and researchers in condensed matter physics, quantum information science and related fields, the book is self-contained and no prior knowledge of these topics is assumed.

Topology in Condensed Matter

Topology in Condensed Matter
Author :
Publisher : Springer Science & Business Media
Total Pages : 263
Release :
ISBN-10 : 9783540312642
ISBN-13 : 3540312641
Rating : 4/5 (42 Downloads)

Book Synopsis Topology in Condensed Matter by : Michael I. Monastyrsky

Download or read book Topology in Condensed Matter written by Michael I. Monastyrsky and published by Springer Science & Business Media. This book was released on 2006-02-04 with total page 263 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book reports new results in condensed matter physics for which topological methods and ideas are important. It considers, on the one hand, recently discovered systems such as carbon nanocrystals and, on the other hand, new topological methods used to describe more traditional systems such as the Fermi surfaces of normal metals, liquid crystals and quasicrystals. The authors of the book are renowned specialists in their fields and present the results of ongoing research, some of it obtained only very recently and not yet published in monograph form.

The Role of Topology in Materials

The Role of Topology in Materials
Author :
Publisher :
Total Pages : 297
Release :
ISBN-10 : 3319765973
ISBN-13 : 9783319765976
Rating : 4/5 (73 Downloads)

Book Synopsis The Role of Topology in Materials by : Sanju Gupta

Download or read book The Role of Topology in Materials written by Sanju Gupta and published by . This book was released on 2018 with total page 297 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the most important advances in the class of topological materials and discusses the topological characterization, modeling and metrology of materials. Further, it addresses currently emerging characterization techniques such as optical and acoustic, vibrational spectroscopy (Brillouin, infrared, Raman), electronic, magnetic, fluorescence correlation imaging, laser lithography, small angle X-ray and neutron scattering and other techniques, including site-selective nanoprobes. The book analyzes the topological aspects to identify and quantify these effects in terms of topology metrics. The topological materials are ubiquitous and range from (i) de novo nanoscale allotropes of carbons in various forms such as nanotubes, nanorings, nanohorns, nanowalls, peapods, graphene, etc. to (ii) metallo-organic frameworks, (iii) helical gold nanotubes, (iv) Möbius conjugated polymers, (v) block co-polymers, (vi) supramolecular assemblies, to (vii) a variety of biological and soft-matter systems, e.g. foams and cellular materials, vesicles of different shapes and genera, biomimetic membranes, and filaments, (viii) topological insulators and topological superconductors, (ix) a variety of Dirac materials including Dirac and Weyl semimetals, as well as (x) knots and network structures. Topological databases and algorithms to model such materials have been also established in this book. In order to understand and properly characterize these important emergent materials, it is necessary to go far beyond the traditional paradigm of microscopic structure-property-function relationships to a paradigm that explicitly incorporates topological aspects from the outset to characterize and/or predict the physical properties and currently untapped functionalities of these advanced materials. Simulation and modeling tools including quantum chemistry, molecular dynamics, 3D visualization and tomography are also indispensable. These concepts have found applications in condensed matter physics, materials science and engineering, physical chemistry and biophysics, and the various topics covered in the book have potential applications in connection with novel synthesis techniques, sensing and catalysis. As such, the book offers a unique resource for graduate students and researchers alike.