Time Series Prediction

Time Series Prediction
Author :
Publisher : Routledge
Total Pages : 665
Release :
ISBN-10 : 9780429972270
ISBN-13 : 042997227X
Rating : 4/5 (70 Downloads)

Book Synopsis Time Series Prediction by : Andreas S. Weigend

Download or read book Time Series Prediction written by Andreas S. Weigend and published by Routledge. This book was released on 2018-05-04 with total page 665 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is a summary of a time series forecasting competition that was held a number of years ago. It aims to provide a snapshot of the range of new techniques that are used to study time series, both as a reference for experts and as a guide for novices.

Forecasting: principles and practice

Forecasting: principles and practice
Author :
Publisher : OTexts
Total Pages : 380
Release :
ISBN-10 : 9780987507112
ISBN-13 : 0987507117
Rating : 4/5 (12 Downloads)

Book Synopsis Forecasting: principles and practice by : Rob J Hyndman

Download or read book Forecasting: principles and practice written by Rob J Hyndman and published by OTexts. This book was released on 2018-05-08 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt: Forecasting is required in many situations. Stocking an inventory may require forecasts of demand months in advance. Telecommunication routing requires traffic forecasts a few minutes ahead. Whatever the circumstances or time horizons involved, forecasting is an important aid in effective and efficient planning. This textbook provides a comprehensive introduction to forecasting methods and presents enough information about each method for readers to use them sensibly.

Time-Series Prediction and Applications

Time-Series Prediction and Applications
Author :
Publisher : Springer
Total Pages : 255
Release :
ISBN-10 : 9783319545974
ISBN-13 : 3319545973
Rating : 4/5 (74 Downloads)

Book Synopsis Time-Series Prediction and Applications by : Amit Konar

Download or read book Time-Series Prediction and Applications written by Amit Konar and published by Springer. This book was released on 2017-03-25 with total page 255 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents machine learning and type-2 fuzzy sets for the prediction of time-series with a particular focus on business forecasting applications. It also proposes new uncertainty management techniques in an economic time-series using type-2 fuzzy sets for prediction of the time-series at a given time point from its preceding value in fluctuating business environments. It employs machine learning to determine repetitively occurring similar structural patterns in the time-series and uses stochastic automaton to predict the most probabilistic structure at a given partition of the time-series. Such predictions help in determining probabilistic moves in a stock index time-series Primarily written for graduate students and researchers in computer science, the book is equally useful for researchers/professionals in business intelligence and stock index prediction. A background of undergraduate level mathematics is presumed, although not mandatory, for most of the sections. Exercises with tips are provided at the end of each chapter to the readers’ ability and understanding of the topics covered.

Machine Learning for Time Series Forecasting with Python

Machine Learning for Time Series Forecasting with Python
Author :
Publisher : John Wiley & Sons
Total Pages : 224
Release :
ISBN-10 : 9781119682387
ISBN-13 : 111968238X
Rating : 4/5 (87 Downloads)

Book Synopsis Machine Learning for Time Series Forecasting with Python by : Francesca Lazzeri

Download or read book Machine Learning for Time Series Forecasting with Python written by Francesca Lazzeri and published by John Wiley & Sons. This book was released on 2020-12-03 with total page 224 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn how to apply the principles of machine learning to time series modeling with this indispensable resource Machine Learning for Time Series Forecasting with Python is an incisive and straightforward examination of one of the most crucial elements of decision-making in finance, marketing, education, and healthcare: time series modeling. Despite the centrality of time series forecasting, few business analysts are familiar with the power or utility of applying machine learning to time series modeling. Author Francesca Lazzeri, a distinguished machine learning scientist and economist, corrects that deficiency by providing readers with comprehensive and approachable explanation and treatment of the application of machine learning to time series forecasting. Written for readers who have little to no experience in time series forecasting or machine learning, the book comprehensively covers all the topics necessary to: Understand time series forecasting concepts, such as stationarity, horizon, trend, and seasonality Prepare time series data for modeling Evaluate time series forecasting models’ performance and accuracy Understand when to use neural networks instead of traditional time series models in time series forecasting Machine Learning for Time Series Forecasting with Python is full real-world examples, resources and concrete strategies to help readers explore and transform data and develop usable, practical time series forecasts. Perfect for entry-level data scientists, business analysts, developers, and researchers, this book is an invaluable and indispensable guide to the fundamental and advanced concepts of machine learning applied to time series modeling.

Practical Time Series Analysis

Practical Time Series Analysis
Author :
Publisher : O'Reilly Media
Total Pages : 500
Release :
ISBN-10 : 9781492041627
ISBN-13 : 1492041629
Rating : 4/5 (27 Downloads)

Book Synopsis Practical Time Series Analysis by : Aileen Nielsen

Download or read book Practical Time Series Analysis written by Aileen Nielsen and published by O'Reilly Media. This book was released on 2019-09-20 with total page 500 pages. Available in PDF, EPUB and Kindle. Book excerpt: Time series data analysis is increasingly important due to the massive production of such data through the internet of things, the digitalization of healthcare, and the rise of smart cities. As continuous monitoring and data collection become more common, the need for competent time series analysis with both statistical and machine learning techniques will increase. Covering innovations in time series data analysis and use cases from the real world, this practical guide will help you solve the most common data engineering and analysis challengesin time series, using both traditional statistical and modern machine learning techniques. Author Aileen Nielsen offers an accessible, well-rounded introduction to time series in both R and Python that will have data scientists, software engineers, and researchers up and running quickly. You’ll get the guidance you need to confidently: Find and wrangle time series data Undertake exploratory time series data analysis Store temporal data Simulate time series data Generate and select features for a time series Measure error Forecast and classify time series with machine or deep learning Evaluate accuracy and performance

Time Series Forecasting in Python

Time Series Forecasting in Python
Author :
Publisher : Simon and Schuster
Total Pages : 454
Release :
ISBN-10 : 9781638351474
ISBN-13 : 1638351473
Rating : 4/5 (74 Downloads)

Book Synopsis Time Series Forecasting in Python by : Marco Peixeiro

Download or read book Time Series Forecasting in Python written by Marco Peixeiro and published by Simon and Schuster. This book was released on 2022-11-15 with total page 454 pages. Available in PDF, EPUB and Kindle. Book excerpt: Build predictive models from time-based patterns in your data. Master statistical models including new deep learning approaches for time series forecasting. In Time Series Forecasting in Python you will learn how to: Recognize a time series forecasting problem and build a performant predictive model Create univariate forecasting models that account for seasonal effects and external variables Build multivariate forecasting models to predict many time series at once Leverage large datasets by using deep learning for forecasting time series Automate the forecasting process Time Series Forecasting in Python teaches you to build powerful predictive models from time-based data. Every model you create is relevant, useful, and easy to implement with Python. You’ll explore interesting real-world datasets like Google’s daily stock price and economic data for the USA, quickly progressing from the basics to developing large-scale models that use deep learning tools like TensorFlow. About the technology You can predict the future—with a little help from Python, deep learning, and time series data! Time series forecasting is a technique for modeling time-centric data to identify upcoming events. New Python libraries and powerful deep learning tools make accurate time series forecasts easier than ever before. About the book Time Series Forecasting in Python teaches you how to get immediate, meaningful predictions from time-based data such as logs, customer analytics, and other event streams. In this accessible book, you’ll learn statistical and deep learning methods for time series forecasting, fully demonstrated with annotated Python code. Develop your skills with projects like predicting the future volume of drug prescriptions, and you’ll soon be ready to build your own accurate, insightful forecasts. What's inside Create models for seasonal effects and external variables Multivariate forecasting models to predict multiple time series Deep learning for large datasets Automate the forecasting process About the reader For data scientists familiar with Python and TensorFlow. About the author Marco Peixeiro is a seasoned data science instructor who has worked as a data scientist for one of Canada’s largest banks. Table of Contents PART 1 TIME WAITS FOR NO ONE 1 Understanding time series forecasting 2 A naive prediction of the future 3 Going on a random walk PART 2 FORECASTING WITH STATISTICAL MODELS 4 Modeling a moving average process 5 Modeling an autoregressive process 6 Modeling complex time series 7 Forecasting non-stationary time series 8 Accounting for seasonality 9 Adding external variables to our model 10 Forecasting multiple time series 11 Capstone: Forecasting the number of antidiabetic drug prescriptions in Australia PART 3 LARGE-SCALE FORECASTING WITH DEEP LEARNING 12 Introducing deep learning for time series forecasting 13 Data windowing and creating baselines for deep learning 14 Baby steps with deep learning 15 Remembering the past with LSTM 16 Filtering a time series with CNN 17 Using predictions to make more predictions 18 Capstone: Forecasting the electric power consumption of a household PART 4 AUTOMATING FORECASTING AT SCALE 19 Automating time series forecasting with Prophet 20 Capstone: Forecasting the monthly average retail price of steak in Canada 21 Going above and beyond

Grammar-Based Feature Generation for Time-Series Prediction

Grammar-Based Feature Generation for Time-Series Prediction
Author :
Publisher : Springer
Total Pages : 105
Release :
ISBN-10 : 9789812874115
ISBN-13 : 9812874119
Rating : 4/5 (15 Downloads)

Book Synopsis Grammar-Based Feature Generation for Time-Series Prediction by : Anthony Mihirana De Silva

Download or read book Grammar-Based Feature Generation for Time-Series Prediction written by Anthony Mihirana De Silva and published by Springer. This book was released on 2015-02-14 with total page 105 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book proposes a novel approach for time-series prediction using machine learning techniques with automatic feature generation. Application of machine learning techniques to predict time-series continues to attract considerable attention due to the difficulty of the prediction problems compounded by the non-linear and non-stationary nature of the real world time-series. The performance of machine learning techniques, among other things, depends on suitable engineering of features. This book proposes a systematic way for generating suitable features using context-free grammar. A number of feature selection criteria are investigated and a hybrid feature generation and selection algorithm using grammatical evolution is proposed. The book contains graphical illustrations to explain the feature generation process. The proposed approaches are demonstrated by predicting the closing price of major stock market indices, peak electricity load and net hourly foreign exchange client trade volume. The proposed method can be applied to a wide range of machine learning architectures and applications to represent complex feature dependencies explicitly when machine learning cannot achieve this by itself. Industrial applications can use the proposed technique to improve their predictions.