Time Series in Economics and Finance

Time Series in Economics and Finance
Author :
Publisher : Springer Nature
Total Pages : 409
Release :
ISBN-10 : 9783030463472
ISBN-13 : 3030463478
Rating : 4/5 (72 Downloads)

Book Synopsis Time Series in Economics and Finance by : Tomas Cipra

Download or read book Time Series in Economics and Finance written by Tomas Cipra and published by Springer Nature. This book was released on 2020-08-31 with total page 409 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the principles and methods for the practical analysis and prediction of economic and financial time series. It covers decomposition methods, autocorrelation methods for univariate time series, volatility and duration modeling for financial time series, and multivariate time series methods, such as cointegration and recursive state space modeling. It also includes numerous practical examples to demonstrate the theory using real-world data, as well as exercises at the end of each chapter to aid understanding. This book serves as a reference text for researchers, students and practitioners interested in time series, and can also be used for university courses on econometrics or computational finance.

Nonlinear Time Series Analysis of Economic and Financial Data

Nonlinear Time Series Analysis of Economic and Financial Data
Author :
Publisher : Springer Science & Business Media
Total Pages : 394
Release :
ISBN-10 : 9780792383796
ISBN-13 : 0792383796
Rating : 4/5 (96 Downloads)

Book Synopsis Nonlinear Time Series Analysis of Economic and Financial Data by : Philip Rothman

Download or read book Nonlinear Time Series Analysis of Economic and Financial Data written by Philip Rothman and published by Springer Science & Business Media. This book was released on 1999-01-31 with total page 394 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nonlinear Time Series Analysis of Economic and Financial Data provides an examination of the flourishing interest that has developed in this area over the past decade. The constant theme throughout this work is that standard linear time series tools leave unexamined and unexploited economically significant features in frequently used data sets. The book comprises original contributions written by specialists in the field, and offers a combination of both applied and methodological papers. It will be useful to both seasoned veterans of nonlinear time series analysis and those searching for an informative panoramic look at front-line developments in the area.

Modeling Financial Time Series with S-PLUS

Modeling Financial Time Series with S-PLUS
Author :
Publisher : Springer Science & Business Media
Total Pages : 632
Release :
ISBN-10 : 9780387217635
ISBN-13 : 0387217630
Rating : 4/5 (35 Downloads)

Book Synopsis Modeling Financial Time Series with S-PLUS by : Eric Zivot

Download or read book Modeling Financial Time Series with S-PLUS written by Eric Zivot and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 632 pages. Available in PDF, EPUB and Kindle. Book excerpt: The field of financial econometrics has exploded over the last decade This book represents an integration of theory, methods, and examples using the S-PLUS statistical modeling language and the S+FinMetrics module to facilitate the practice of financial econometrics. This is the first book to show the power of S-PLUS for the analysis of time series data. It is written for researchers and practitioners in the finance industry, academic researchers in economics and finance, and advanced MBA and graduate students in economics and finance. Readers are assumed to have a basic knowledge of S-PLUS and a solid grounding in basic statistics and time series concepts. This Second Edition is updated to cover S+FinMetrics 2.0 and includes new chapters on copulas, nonlinear regime switching models, continuous-time financial models, generalized method of moments, semi-nonparametric conditional density models, and the efficient method of moments. Eric Zivot is an associate professor and Gary Waterman Distinguished Scholar in the Economics Department, and adjunct associate professor of finance in the Business School at the University of Washington. He regularly teaches courses on econometric theory, financial econometrics and time series econometrics, and is the recipient of the Henry T. Buechel Award for Outstanding Teaching. He is an associate editor of Studies in Nonlinear Dynamics and Econometrics. He has published papers in the leading econometrics journals, including Econometrica, Econometric Theory, the Journal of Business and Economic Statistics, Journal of Econometrics, and the Review of Economics and Statistics. Jiahui Wang is an employee of Ronin Capital LLC. He received a Ph.D. in Economics from the University of Washington in 1997. He has published in leading econometrics journals such as Econometrica and Journal of Business and Economic Statistics, and is the Principal Investigator of National Science Foundation SBIR grants. In 2002 Dr. Wang was selected as one of the "2000 Outstanding Scholars of the 21st Century" by International Biographical Centre.

Data Science for Economics and Finance

Data Science for Economics and Finance
Author :
Publisher : Springer Nature
Total Pages : 357
Release :
ISBN-10 : 9783030668914
ISBN-13 : 3030668916
Rating : 4/5 (14 Downloads)

Book Synopsis Data Science for Economics and Finance by : Sergio Consoli

Download or read book Data Science for Economics and Finance written by Sergio Consoli and published by Springer Nature. This book was released on 2021 with total page 357 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book covers the use of data science, including advanced machine learning, big data analytics, Semantic Web technologies, natural language processing, social media analysis, time series analysis, among others, for applications in economics and finance. In addition, it shows some successful applications of advanced data science solutions used to extract new knowledge from data in order to improve economic forecasting models. The book starts with an introduction on the use of data science technologies in economics and finance and is followed by thirteen chapters showing success stories of the application of specific data science methodologies, touching on particular topics related to novel big data sources and technologies for economic analysis (e.g. social media and news); big data models leveraging on supervised/unsupervised (deep) machine learning; natural language processing to build economic and financial indicators; and forecasting and nowcasting of economic variables through time series analysis. This book is relevant to all stakeholders involved in digital and data-intensive research in economics and finance, helping them to understand the main opportunities and challenges, become familiar with the latest methodological findings, and learn how to use and evaluate the performances of novel tools and frameworks. It primarily targets data scientists and business analysts exploiting data science technologies, and it will also be a useful resource to research students in disciplines and courses related to these topics. Overall, readers will learn modern and effective data science solutions to create tangible innovations for economic and financial applications.

Time Series Models for Business and Economic Forecasting

Time Series Models for Business and Economic Forecasting
Author :
Publisher : Cambridge University Press
Total Pages : 421
Release :
ISBN-10 : 9781139952125
ISBN-13 : 1139952129
Rating : 4/5 (25 Downloads)

Book Synopsis Time Series Models for Business and Economic Forecasting by : Philip Hans Franses

Download or read book Time Series Models for Business and Economic Forecasting written by Philip Hans Franses and published by Cambridge University Press. This book was released on 2014-04-24 with total page 421 pages. Available in PDF, EPUB and Kindle. Book excerpt: With a new author team contributing decades of practical experience, this fully updated and thoroughly classroom-tested second edition textbook prepares students and practitioners to create effective forecasting models and master the techniques of time series analysis. Taking a practical and example-driven approach, this textbook summarises the most critical decisions, techniques and steps involved in creating forecasting models for business and economics. Students are led through the process with an entirely new set of carefully developed theoretical and practical exercises. Chapters examine the key features of economic time series, univariate time series analysis, trends, seasonality, aberrant observations, conditional heteroskedasticity and ARCH models, non-linearity and multivariate time series, making this a complete practical guide. Downloadable datasets are available online.

Time Series Analysis and Adjustment

Time Series Analysis and Adjustment
Author :
Publisher : Gower Publishing, Ltd.
Total Pages : 149
Release :
ISBN-10 : 9781472400727
ISBN-13 : 1472400720
Rating : 4/5 (27 Downloads)

Book Synopsis Time Series Analysis and Adjustment by : Haim Y Bleikh

Download or read book Time Series Analysis and Adjustment written by Haim Y Bleikh and published by Gower Publishing, Ltd.. This book was released on 2014-07-28 with total page 149 pages. Available in PDF, EPUB and Kindle. Book excerpt: In Time Series Analysis and Adjustment the authors explain how the last four decades have brought dramatic changes in the way researchers analyze economic and financial data on behalf of economic and financial institutions and provide statistics to whomsoever requires them. Such analysis has long involved what is known as econometrics, but time series analysis is a different approach driven more by data than economic theory and focused on modelling. An understanding of time series and the application and understanding of related time series adjustment procedures is essential in areas such as risk management, business cycle analysis, and forecasting. Dealing with economic data involves grappling with things like varying numbers of working and trading days in different months and movable national holidays. Special attention has to be given to such things. However, the main problem in time series analysis is randomness. In real-life, data patterns are usually unclear, and the challenge is to uncover hidden patterns in the data and then to generate accurate forecasts. The case studies in this book demonstrate that time series adjustment methods can be efficaciously applied and utilized, for both analysis and forecasting, but they must be used in the context of reasoned statistical and economic judgment. The authors believe this is the first published study to really deal with this issue of context.

Time Series Techniques for Economists

Time Series Techniques for Economists
Author :
Publisher : Cambridge University Press
Total Pages : 392
Release :
ISBN-10 : 0521405742
ISBN-13 : 9780521405744
Rating : 4/5 (42 Downloads)

Book Synopsis Time Series Techniques for Economists by : Terence C. Mills

Download or read book Time Series Techniques for Economists written by Terence C. Mills and published by Cambridge University Press. This book was released on 1990 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: The application of time series techniques in economics has become increasingly important, both for forecasting purposes and in the empirical analysis of time series in general. In this book, Terence Mills not only brings together recent research at the frontiers of the subject, but also analyses the areas of most importance to applied economics. It is an up-to-date text which extends the basic techniques of analysis to cover the development of methods that can be used to analyse a wide range of economic problems. The book analyses three basic areas of time series analysis: univariate models, multivariate models, and non-linear models. In each case the basic theory is outlined and then extended to cover recent developments. Particular emphasis is placed on applications of the theory to important areas of applied economics and on the computer software and programs needed to implement the techniques. This book clearly distinguishes itself from its competitors by emphasising the techniques of time series modelling rather than technical aspects such as estimation, and by the breadth of the models considered. It features many detailed real-world examples using a wide range of actual time series. It will be useful to econometricians and specialists in forecasting and finance and accessible to most practitioners in economics and the allied professions.