Theory and Applications of Stochastic Processes

Theory and Applications of Stochastic Processes
Author :
Publisher : Springer Science & Business Media
Total Pages : 486
Release :
ISBN-10 : 9781441916051
ISBN-13 : 1441916059
Rating : 4/5 (51 Downloads)

Book Synopsis Theory and Applications of Stochastic Processes by : Zeev Schuss

Download or read book Theory and Applications of Stochastic Processes written by Zeev Schuss and published by Springer Science & Business Media. This book was released on 2009-12-09 with total page 486 pages. Available in PDF, EPUB and Kindle. Book excerpt: Stochastic processes and diffusion theory are the mathematical underpinnings of many scientific disciplines, including statistical physics, physical chemistry, molecular biophysics, communications theory and many more. Many books, reviews and research articles have been published on this topic, from the purely mathematical to the most practical. This book offers an analytical approach to stochastic processes that are most common in the physical and life sciences, as well as in optimal control and in the theory of filltering of signals from noisy measurements. Its aim is to make probability theory in function space readily accessible to scientists trained in the traditional methods of applied mathematics, such as integral, ordinary, and partial differential equations and asymptotic methods, rather than in probability and measure theory.

Stochastic Processes

Stochastic Processes
Author :
Publisher : Cambridge University Press
Total Pages : 559
Release :
ISBN-10 : 9781107039759
ISBN-13 : 1107039754
Rating : 4/5 (59 Downloads)

Book Synopsis Stochastic Processes by : Robert G. Gallager

Download or read book Stochastic Processes written by Robert G. Gallager and published by Cambridge University Press. This book was released on 2013-12-12 with total page 559 pages. Available in PDF, EPUB and Kindle. Book excerpt: The definitive textbook on stochastic processes, written by one of the world's leading information theorists, covering both theory and applications.

Stochastic Processes

Stochastic Processes
Author :
Publisher : CRC Press
Total Pages : 866
Release :
ISBN-10 : 9781498701846
ISBN-13 : 1498701841
Rating : 4/5 (46 Downloads)

Book Synopsis Stochastic Processes by : Pierre Del Moral

Download or read book Stochastic Processes written by Pierre Del Moral and published by CRC Press. This book was released on 2017-02-24 with total page 866 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unlike traditional books presenting stochastic processes in an academic way, this book includes concrete applications that students will find interesting such as gambling, finance, physics, signal processing, statistics, fractals, and biology. Written with an important illustrated guide in the beginning, it contains many illustrations, photos and pictures, along with several website links. Computational tools such as simulation and Monte Carlo methods are included as well as complete toolboxes for both traditional and new computational techniques.

Stationary Stochastic Processes

Stationary Stochastic Processes
Author :
Publisher : CRC Press
Total Pages : 378
Release :
ISBN-10 : 9781466557796
ISBN-13 : 1466557796
Rating : 4/5 (96 Downloads)

Book Synopsis Stationary Stochastic Processes by : Georg Lindgren

Download or read book Stationary Stochastic Processes written by Georg Lindgren and published by CRC Press. This book was released on 2012-10-01 with total page 378 pages. Available in PDF, EPUB and Kindle. Book excerpt: Intended for a second course in stationary processes, Stationary Stochastic Processes: Theory and Applications presents the theory behind the field’s widely scattered applications in engineering and science. In addition, it reviews sample function properties and spectral representations for stationary processes and fields, including a portion on stationary point processes. Features Presents and illustrates the fundamental correlation and spectral methods for stochastic processes and random fields Explains how the basic theory is used in special applications like detection theory and signal processing, spatial statistics, and reliability Motivates mathematical theory from a statistical model-building viewpoint Introduces a selection of special topics, including extreme value theory, filter theory, long-range dependence, and point processes Provides more than 100 exercises with hints to solutions and selected full solutions This book covers key topics such as ergodicity, crossing problems, and extremes, and opens the doors to a selection of special topics, like extreme value theory, filter theory, long-range dependence, and point processes, and includes many exercises and examples to illustrate the theory. Precise in mathematical details without being pedantic, Stationary Stochastic Processes: Theory and Applications is for the student with some experience with stochastic processes and a desire for deeper understanding without getting bogged down in abstract mathematics.

Stochastic Processes and Applications

Stochastic Processes and Applications
Author :
Publisher : Springer
Total Pages : 345
Release :
ISBN-10 : 9781493913237
ISBN-13 : 1493913239
Rating : 4/5 (37 Downloads)

Book Synopsis Stochastic Processes and Applications by : Grigorios A. Pavliotis

Download or read book Stochastic Processes and Applications written by Grigorios A. Pavliotis and published by Springer. This book was released on 2014-11-19 with total page 345 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents various results and techniques from the theory of stochastic processes that are useful in the study of stochastic problems in the natural sciences. The main focus is analytical methods, although numerical methods and statistical inference methodologies for studying diffusion processes are also presented. The goal is the development of techniques that are applicable to a wide variety of stochastic models that appear in physics, chemistry and other natural sciences. Applications such as stochastic resonance, Brownian motion in periodic potentials and Brownian motors are studied and the connection between diffusion processes and time-dependent statistical mechanics is elucidated. The book contains a large number of illustrations, examples, and exercises. It will be useful for graduate-level courses on stochastic processes for students in applied mathematics, physics and engineering. Many of the topics covered in this book (reversible diffusions, convergence to equilibrium for diffusion processes, inference methods for stochastic differential equations, derivation of the generalized Langevin equation, exit time problems) cannot be easily found in textbook form and will be useful to both researchers and students interested in the applications of stochastic processes.

Algebraic Structures and Applications

Algebraic Structures and Applications
Author :
Publisher : Springer Nature
Total Pages : 976
Release :
ISBN-10 : 9783030418502
ISBN-13 : 3030418502
Rating : 4/5 (02 Downloads)

Book Synopsis Algebraic Structures and Applications by : Sergei Silvestrov

Download or read book Algebraic Structures and Applications written by Sergei Silvestrov and published by Springer Nature. This book was released on 2020-06-18 with total page 976 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explores the latest advances in algebraic structures and applications, and focuses on mathematical concepts, methods, structures, problems, algorithms and computational methods important in the natural sciences, engineering and modern technologies. In particular, it features mathematical methods and models of non-commutative and non-associative algebras, hom-algebra structures, generalizations of differential calculus, quantum deformations of algebras, Lie algebras and their generalizations, semi-groups and groups, constructive algebra, matrix analysis and its interplay with topology, knot theory, dynamical systems, functional analysis, stochastic processes, perturbation analysis of Markov chains, and applications in network analysis, financial mathematics and engineering mathematics. The book addresses both theory and applications, which are illustrated with a wealth of ideas, proofs and examples to help readers understand the material and develop new mathematical methods and concepts of their own. The high-quality chapters share a wealth of new methods and results, review cutting-edge research and discuss open problems and directions for future research. Taken together, they offer a source of inspiration for a broad range of researchers and research students whose work involves algebraic structures and their applications, probability theory and mathematical statistics, applied mathematics, engineering mathematics and related areas.

Introduction To Stochastic Processes

Introduction To Stochastic Processes
Author :
Publisher : World Scientific
Total Pages : 245
Release :
ISBN-10 : 9789814740326
ISBN-13 : 9814740322
Rating : 4/5 (26 Downloads)

Book Synopsis Introduction To Stochastic Processes by : Mu-fa Chen

Download or read book Introduction To Stochastic Processes written by Mu-fa Chen and published by World Scientific. This book was released on 2021-05-25 with total page 245 pages. Available in PDF, EPUB and Kindle. Book excerpt: The objective of this book is to introduce the elements of stochastic processes in a rather concise manner where we present the two most important parts — Markov chains and stochastic analysis. The readers are led directly to the core of the main topics to be treated in the context. Further details and additional materials are left to a section containing abundant exercises for further reading and studying.In the part on Markov chains, the focus is on the ergodicity. By using the minimal nonnegative solution method, we deal with the recurrence and various types of ergodicity. This is done step by step, from finite state spaces to denumerable state spaces, and from discrete time to continuous time. The methods of proofs adopt modern techniques, such as coupling and duality methods. Some very new results are included, such as the estimate of the spectral gap. The structure and proofs in the first part are rather different from other existing textbooks on Markov chains.In the part on stochastic analysis, we cover the martingale theory and Brownian motions, the stochastic integral and stochastic differential equations with emphasis on one dimension, and the multidimensional stochastic integral and stochastic equation based on semimartingales. We introduce three important topics here: the Feynman-Kac formula, random time transform and Girsanov transform. As an essential application of the probability theory in classical mathematics, we also deal with the famous Brunn-Minkowski inequality in convex geometry.This book also features modern probability theory that is used in different fields, such as MCMC, or even deterministic areas: convex geometry and number theory. It provides a new and direct routine for students going through the classical Markov chains to the modern stochastic analysis.