The Computational Complexity of Machine Learning

The Computational Complexity of Machine Learning
Author :
Publisher : MIT Press
Total Pages : 194
Release :
ISBN-10 : 0262111527
ISBN-13 : 9780262111522
Rating : 4/5 (27 Downloads)

Book Synopsis The Computational Complexity of Machine Learning by : Michael J. Kearns

Download or read book The Computational Complexity of Machine Learning written by Michael J. Kearns and published by MIT Press. This book was released on 1990 with total page 194 pages. Available in PDF, EPUB and Kindle. Book excerpt: We also give algorithms for learning powerful concept classes under the uniform distribution, and give equivalences between natural models of efficient learnability. This thesis also includes detailed definitions and motivation for the distribution-free model, a chapter discussing past research in this model and related models, and a short list of important open problems."

Computational Complexity

Computational Complexity
Author :
Publisher : Cambridge University Press
Total Pages : 609
Release :
ISBN-10 : 9780521424264
ISBN-13 : 0521424267
Rating : 4/5 (64 Downloads)

Book Synopsis Computational Complexity by : Sanjeev Arora

Download or read book Computational Complexity written by Sanjeev Arora and published by Cambridge University Press. This book was released on 2009-04-20 with total page 609 pages. Available in PDF, EPUB and Kindle. Book excerpt: New and classical results in computational complexity, including interactive proofs, PCP, derandomization, and quantum computation. Ideal for graduate students.

Mathematics and Computation

Mathematics and Computation
Author :
Publisher : Princeton University Press
Total Pages : 434
Release :
ISBN-10 : 9780691189130
ISBN-13 : 0691189137
Rating : 4/5 (30 Downloads)

Book Synopsis Mathematics and Computation by : Avi Wigderson

Download or read book Mathematics and Computation written by Avi Wigderson and published by Princeton University Press. This book was released on 2019-10-29 with total page 434 pages. Available in PDF, EPUB and Kindle. Book excerpt: From the winner of the Turing Award and the Abel Prize, an introduction to computational complexity theory, its connections and interactions with mathematics, and its central role in the natural and social sciences, technology, and philosophy Mathematics and Computation provides a broad, conceptual overview of computational complexity theory—the mathematical study of efficient computation. With important practical applications to computer science and industry, computational complexity theory has evolved into a highly interdisciplinary field, with strong links to most mathematical areas and to a growing number of scientific endeavors. Avi Wigderson takes a sweeping survey of complexity theory, emphasizing the field’s insights and challenges. He explains the ideas and motivations leading to key models, notions, and results. In particular, he looks at algorithms and complexity, computations and proofs, randomness and interaction, quantum and arithmetic computation, and cryptography and learning, all as parts of a cohesive whole with numerous cross-influences. Wigderson illustrates the immense breadth of the field, its beauty and richness, and its diverse and growing interactions with other areas of mathematics. He ends with a comprehensive look at the theory of computation, its methodology and aspirations, and the unique and fundamental ways in which it has shaped and will further shape science, technology, and society. For further reading, an extensive bibliography is provided for all topics covered. Mathematics and Computation is useful for undergraduate and graduate students in mathematics, computer science, and related fields, as well as researchers and teachers in these fields. Many parts require little background, and serve as an invitation to newcomers seeking an introduction to the theory of computation. Comprehensive coverage of computational complexity theory, and beyond High-level, intuitive exposition, which brings conceptual clarity to this central and dynamic scientific discipline Historical accounts of the evolution and motivations of central concepts and models A broad view of the theory of computation's influence on science, technology, and society Extensive bibliography

Understanding Machine Learning

Understanding Machine Learning
Author :
Publisher : Cambridge University Press
Total Pages : 415
Release :
ISBN-10 : 9781107057135
ISBN-13 : 1107057132
Rating : 4/5 (35 Downloads)

Book Synopsis Understanding Machine Learning by : Shai Shalev-Shwartz

Download or read book Understanding Machine Learning written by Shai Shalev-Shwartz and published by Cambridge University Press. This book was released on 2014-05-19 with total page 415 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduces machine learning and its algorithmic paradigms, explaining the principles behind automated learning approaches and the considerations underlying their usage.

Quantum Machine Learning

Quantum Machine Learning
Author :
Publisher : Academic Press
Total Pages : 176
Release :
ISBN-10 : 9780128010990
ISBN-13 : 0128010991
Rating : 4/5 (90 Downloads)

Book Synopsis Quantum Machine Learning by : Peter Wittek

Download or read book Quantum Machine Learning written by Peter Wittek and published by Academic Press. This book was released on 2014-09-10 with total page 176 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantum Machine Learning bridges the gap between abstract developments in quantum computing and the applied research on machine learning. Paring down the complexity of the disciplines involved, it focuses on providing a synthesis that explains the most important machine learning algorithms in a quantum framework. Theoretical advances in quantum computing are hard to follow for computer scientists, and sometimes even for researchers involved in the field. The lack of a step-by-step guide hampers the broader understanding of this emergent interdisciplinary body of research. Quantum Machine Learning sets the scene for a deeper understanding of the subject for readers of different backgrounds. The author has carefully constructed a clear comparison of classical learning algorithms and their quantum counterparts, thus making differences in computational complexity and learning performance apparent. This book synthesizes of a broad array of research into a manageable and concise presentation, with practical examples and applications. - Bridges the gap between abstract developments in quantum computing with the applied research on machine learning - Provides the theoretical minimum of machine learning, quantum mechanics, and quantum computing - Gives step-by-step guidance to a broader understanding of this emergent interdisciplinary body of research

An Introduction to Computational Learning Theory

An Introduction to Computational Learning Theory
Author :
Publisher : MIT Press
Total Pages : 230
Release :
ISBN-10 : 0262111934
ISBN-13 : 9780262111935
Rating : 4/5 (34 Downloads)

Book Synopsis An Introduction to Computational Learning Theory by : Michael J. Kearns

Download or read book An Introduction to Computational Learning Theory written by Michael J. Kearns and published by MIT Press. This book was released on 1994-08-15 with total page 230 pages. Available in PDF, EPUB and Kindle. Book excerpt: Emphasizing issues of computational efficiency, Michael Kearns and Umesh Vazirani introduce a number of central topics in computational learning theory for researchers and students in artificial intelligence, neural networks, theoretical computer science, and statistics. Emphasizing issues of computational efficiency, Michael Kearns and Umesh Vazirani introduce a number of central topics in computational learning theory for researchers and students in artificial intelligence, neural networks, theoretical computer science, and statistics. Computational learning theory is a new and rapidly expanding area of research that examines formal models of induction with the goals of discovering the common methods underlying efficient learning algorithms and identifying the computational impediments to learning. Each topic in the book has been chosen to elucidate a general principle, which is explored in a precise formal setting. Intuition has been emphasized in the presentation to make the material accessible to the nontheoretician while still providing precise arguments for the specialist. This balance is the result of new proofs of established theorems, and new presentations of the standard proofs. The topics covered include the motivation, definitions, and fundamental results, both positive and negative, for the widely studied L. G. Valiant model of Probably Approximately Correct Learning; Occam's Razor, which formalizes a relationship between learning and data compression; the Vapnik-Chervonenkis dimension; the equivalence of weak and strong learning; efficient learning in the presence of noise by the method of statistical queries; relationships between learning and cryptography, and the resulting computational limitations on efficient learning; reducibility between learning problems; and algorithms for learning finite automata from active experimentation.

Proceedings of International Scientific Conference on Telecommunications, Computing and Control

Proceedings of International Scientific Conference on Telecommunications, Computing and Control
Author :
Publisher : Springer Nature
Total Pages : 541
Release :
ISBN-10 : 9789813366329
ISBN-13 : 981336632X
Rating : 4/5 (29 Downloads)

Book Synopsis Proceedings of International Scientific Conference on Telecommunications, Computing and Control by : Nikita Voinov

Download or read book Proceedings of International Scientific Conference on Telecommunications, Computing and Control written by Nikita Voinov and published by Springer Nature. This book was released on 2021-04-28 with total page 541 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a platform for academics and practitioners for sharing innovative results, approaches, developments, and research projects in computer science and information technology, focusing on the latest challenges in advanced computing and solutions introducing mathematical and engineering approaches. The book presents discussions in the area of advances and challenges of modern computer science, including telecommunications and signal processing, machine learning and artificial intelligence, intelligent control systems, modeling and simulation, data science and big data, data visualization and graphics systems, distributed, cloud and high-performance computing, and software engineering. The papers included are presented at TELECCON 2019 organized by Peter the Great St. Petersburg University during November 18–19, 2019.