Surveys on Recent Developments in Algebraic Geometry

Surveys on Recent Developments in Algebraic Geometry
Author :
Publisher : American Mathematical Soc.
Total Pages : 386
Release :
ISBN-10 : 9781470435578
ISBN-13 : 1470435578
Rating : 4/5 (78 Downloads)

Book Synopsis Surveys on Recent Developments in Algebraic Geometry by : Izzet Coskun

Download or read book Surveys on Recent Developments in Algebraic Geometry written by Izzet Coskun and published by American Mathematical Soc.. This book was released on 2017-07-12 with total page 386 pages. Available in PDF, EPUB and Kindle. Book excerpt: The algebraic geometry community has a tradition of running a summer research institute every ten years. During these influential meetings a large number of mathematicians from around the world convene to overview the developments of the past decade and to outline the most fundamental and far-reaching problems for the next. The meeting is preceded by a Bootcamp aimed at graduate students and young researchers. This volume collects ten surveys that grew out of the Bootcamp, held July 6–10, 2015, at University of Utah, Salt Lake City, Utah. These papers give succinct and thorough introductions to some of the most important and exciting developments in algebraic geometry in the last decade. Included are descriptions of the striking advances in the Minimal Model Program, moduli spaces, derived categories, Bridgeland stability, motivic homotopy theory, methods in characteristic and Hodge theory. Surveys contain many examples, exercises and open problems, which will make this volume an invaluable and enduring resource for researchers looking for new directions.

Surveys on Recent Developments in Algebraic Geometry

Surveys on Recent Developments in Algebraic Geometry
Author :
Publisher :
Total Pages : 386
Release :
ISBN-10 : 1470441217
ISBN-13 : 9781470441210
Rating : 4/5 (17 Downloads)

Book Synopsis Surveys on Recent Developments in Algebraic Geometry by : Izzet Coskun

Download or read book Surveys on Recent Developments in Algebraic Geometry written by Izzet Coskun and published by . This book was released on 2017 with total page 386 pages. Available in PDF, EPUB and Kindle. Book excerpt: The algebraic geometry community has a tradition of running a summer research institute every ten years. During these influential meetings a large number of mathematicians from around the world convene to overview the developments of the past decade and to outline the most fundamental and far-reaching problems for the next. The meeting is preceded by a Bootcamp aimed at graduate students and young researchers. This volume collects ten surveys that grew out of the Bootcamp, held July 6-10, 2015, at University of Utah, Salt Lake City, Utah. These papers give succinct and thorough introductions to some of the most important and exciting developments in algebraic geometry in the last decade. Included are descriptions of the striking advances in the Minimal Model Program, moduli spaces, derived categories, Bridgeland stability, motivic homotopy theory, methods in characteristic p and Hodge theory. Surveys contain many examples, exercises and open problems, which will make this volume an invaluable and enduring resource for researchers looking for new directions

Rationality Problems in Algebraic Geometry

Rationality Problems in Algebraic Geometry
Author :
Publisher : Springer
Total Pages : 176
Release :
ISBN-10 : 9783319462097
ISBN-13 : 3319462091
Rating : 4/5 (97 Downloads)

Book Synopsis Rationality Problems in Algebraic Geometry by : Arnaud Beauville

Download or read book Rationality Problems in Algebraic Geometry written by Arnaud Beauville and published by Springer. This book was released on 2016-12-06 with total page 176 pages. Available in PDF, EPUB and Kindle. Book excerpt: Providing an overview of the state of the art on rationality questions in algebraic geometry, this volume gives an update on the most recent developments. It offers a comprehensive introduction to this fascinating topic, and will certainly become an essential reference for anybody working in the field. Rationality problems are of fundamental importance both in algebra and algebraic geometry. Historically, rationality problems motivated significant developments in the theory of abelian integrals, Riemann surfaces and the Abel–Jacobi map, among other areas, and they have strong links with modern notions such as moduli spaces, Hodge theory, algebraic cycles and derived categories. This text is aimed at researchers and graduate students in algebraic geometry.

Real Algebraic Geometry

Real Algebraic Geometry
Author :
Publisher : Springer
Total Pages : 425
Release :
ISBN-10 : 9783540473374
ISBN-13 : 3540473378
Rating : 4/5 (74 Downloads)

Book Synopsis Real Algebraic Geometry by : Michel Coste

Download or read book Real Algebraic Geometry written by Michel Coste and published by Springer. This book was released on 2006-11-15 with total page 425 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ten years after the first Rennes international meeting on real algebraic geometry, the second one looked at the developments in the subject during the intervening decade - see the 6 survey papers listed below. Further contributions from the participants on recent research covered real algebra and geometry, topology of real algebraic varieties and 16thHilbert problem, classical algebraic geometry, techniques in real algebraic geometry, algorithms in real algebraic geometry, semialgebraic geometry, real analytic geometry. CONTENTS: Survey papers: M. Knebusch: Semialgebraic topology in the last ten years.- R. Parimala: Algebraic and topological invariants of real algebraic varieties.- Polotovskii, G.M.: On the classification of decomposing plane algebraic curves.- Scheiderer, C.: Real algebra and its applications to geometry in the last ten years: some major developments and results.- Shustin, E.L.: Topology of real plane algebraic curves.- Silhol, R.: Moduli problems in real algebraic geometry. Further contributions by: S. Akbulut and H. King; C. Andradas and J. Ruiz; A. Borobia; L. Br|cker; G.W. Brumfield; A. Castilla; Z. Charzynski and P. Skibinski; M. Coste and M. Reguiat; A. Degtyarev; Z. Denkowska; J.-P. Francoise and F. Ronga; J.M. Gamboa and C. Ueno; D. Gondard- Cozette; I.V. Itenberg; P. Jaworski; A. Korchagin; T. Krasinksi and S. Spodzieja; K. Kurdyka; H. Lombardi; M. Marshall and L. Walter; V.F. Mazurovskii; G. Mikhalkin; T. Mostowski and E. Rannou; E.I. Shustin; N. Vorobjov.

Positivity in Algebraic Geometry I

Positivity in Algebraic Geometry I
Author :
Publisher : Springer Science & Business Media
Total Pages : 414
Release :
ISBN-10 : 3540225331
ISBN-13 : 9783540225331
Rating : 4/5 (31 Downloads)

Book Synopsis Positivity in Algebraic Geometry I by : R.K. Lazarsfeld

Download or read book Positivity in Algebraic Geometry I written by R.K. Lazarsfeld and published by Springer Science & Business Media. This book was released on 2004-08-24 with total page 414 pages. Available in PDF, EPUB and Kindle. Book excerpt: This two volume work on Positivity in Algebraic Geometry contains a contemporary account of a body of work in complex algebraic geometry loosely centered around the theme of positivity. Topics in Volume I include ample line bundles and linear series on a projective variety, the classical theorems of Lefschetz and Bertini and their modern outgrowths, vanishing theorems, and local positivity. Volume II begins with a survey of positivity for vector bundles, and moves on to a systematic development of the theory of multiplier ideals and their applications. A good deal of this material has not previously appeared in book form, and substantial parts are worked out here in detail for the first time. At least a third of the book is devoted to concrete examples, applications, and pointers to further developments. Volume I is more elementary than Volume II, and, for the most part, it can be read without access to Volume II.

Current Topics in Complex Algebraic Geometry

Current Topics in Complex Algebraic Geometry
Author :
Publisher : Cambridge University Press
Total Pages : 180
Release :
ISBN-10 : 0521562449
ISBN-13 : 9780521562447
Rating : 4/5 (49 Downloads)

Book Synopsis Current Topics in Complex Algebraic Geometry by : Charles Herbert Clemens

Download or read book Current Topics in Complex Algebraic Geometry written by Charles Herbert Clemens and published by Cambridge University Press. This book was released on 1995 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt: The 1992/93 academic year at the Mathematical Sciences Research Institute was devoted to complex algebraic geometry. This volume collects survey articles that arose from this event, which took place at a time when algebraic geometry was undergoing a major change. The editors of the volume, Herbert Clemens and János Kollár, chaired the organizing committee. This book gives a good idea of the intellectual content of the special year and of the workshops. Its articles represent very well the change of direction and branching out witnessed by algebraic geometry in the last few years.

A Study in Derived Algebraic Geometry

A Study in Derived Algebraic Geometry
Author :
Publisher : American Mathematical Society
Total Pages : 533
Release :
ISBN-10 : 9781470452841
ISBN-13 : 1470452847
Rating : 4/5 (41 Downloads)

Book Synopsis A Study in Derived Algebraic Geometry by : Dennis Gaitsgory

Download or read book A Study in Derived Algebraic Geometry written by Dennis Gaitsgory and published by American Mathematical Society. This book was released on 2019-12-31 with total page 533 pages. Available in PDF, EPUB and Kindle. Book excerpt: Derived algebraic geometry is a far-reaching generalization of algebraic geometry. It has found numerous applications in various parts of mathematics, most prominently in representation theory. This volume develops the theory of ind-coherent sheaves in the context of derived algebraic geometry. Ind-coherent sheaves are a “renormalization” of quasi-coherent sheaves and provide a natural setting for Grothendieck-Serre duality as well as geometric incarnations of numerous categories of interest in representation theory. This volume consists of three parts and an appendix. The first part is a survey of homotopical algebra in the setting of $infty$-categories and the basics of derived algebraic geometry. The second part builds the theory of ind-coherent sheaves as a functor out of the category of correspondences and studies the relationship between ind-coherent and quasi-coherent sheaves. The third part sets up the general machinery of the $mathrm{(}infty, 2mathrm{)}$-category of correspondences needed for the second part. The category of correspondences, via the theory developed in the third part, provides a general framework for Grothendieck's six-functor formalism. The appendix provides the necessary background on $mathrm{(}infty, 2mathrm{)}$-categories needed for the third part.