Functional Analysis for Probability and Stochastic Processes

Functional Analysis for Probability and Stochastic Processes
Author :
Publisher : Cambridge University Press
Total Pages : 416
Release :
ISBN-10 : 0521831660
ISBN-13 : 9780521831666
Rating : 4/5 (60 Downloads)

Book Synopsis Functional Analysis for Probability and Stochastic Processes by : Adam Bobrowski

Download or read book Functional Analysis for Probability and Stochastic Processes written by Adam Bobrowski and published by Cambridge University Press. This book was released on 2005-08-11 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text presents selected areas of functional analysis that can facilitate an understanding of ideas in probability and stochastic processes. Topics covered include basic Hilbert and Banach spaces, weak topologies and Banach algebras, and the theory ofsemigroups of bounded linear operators.

Stochastic Processes and Functional Analysis

Stochastic Processes and Functional Analysis
Author :
Publisher : CRC Press
Total Pages : 526
Release :
ISBN-10 : 0203913574
ISBN-13 : 9780203913574
Rating : 4/5 (74 Downloads)

Book Synopsis Stochastic Processes and Functional Analysis by : Alan C. Krinik

Download or read book Stochastic Processes and Functional Analysis written by Alan C. Krinik and published by CRC Press. This book was released on 2004-03-23 with total page 526 pages. Available in PDF, EPUB and Kindle. Book excerpt: This extraordinary compilation is an expansion of the recent American Mathematical Society Special Session celebrating M. M. Rao's distinguished career and includes most of the presented papers as well as ancillary contributions from session invitees. This book shows the effectiveness of abstract analysis for solving fundamental problems of stochas

Introduction to Infinite Dimensional Stochastic Analysis

Introduction to Infinite Dimensional Stochastic Analysis
Author :
Publisher : Springer Science & Business Media
Total Pages : 308
Release :
ISBN-10 : 9789401141086
ISBN-13 : 9401141088
Rating : 4/5 (86 Downloads)

Book Synopsis Introduction to Infinite Dimensional Stochastic Analysis by : Zhi-yuan Huang

Download or read book Introduction to Infinite Dimensional Stochastic Analysis written by Zhi-yuan Huang and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: The infinite dimensional analysis as a branch of mathematical sciences was formed in the late 19th and early 20th centuries. Motivated by problems in mathematical physics, the first steps in this field were taken by V. Volterra, R. GateallX, P. Levy and M. Frechet, among others (see the preface to Levy[2]). Nevertheless, the most fruitful direction in this field is the infinite dimensional integration theory initiated by N. Wiener and A. N. Kolmogorov which is closely related to the developments of the theory of stochastic processes. It was Wiener who constructed for the first time in 1923 a probability measure on the space of all continuous functions (i. e. the Wiener measure) which provided an ideal math ematical model for Brownian motion. Then some important properties of Wiener integrals, especially the quasi-invariance of Gaussian measures, were discovered by R. Cameron and W. Martin[l, 2, 3]. In 1931, Kolmogorov[l] deduced a second partial differential equation for transition probabilities of Markov processes order with continuous trajectories (i. e. diffusion processes) and thus revealed the deep connection between theories of differential equations and stochastic processes. The stochastic analysis created by K. Ito (also independently by Gihman [1]) in the forties is essentially an infinitesimal analysis for trajectories of stochastic processes. By virtue of Ito's stochastic differential equations one can construct diffusion processes via direct probabilistic methods and treat them as function als of Brownian paths (i. e. the Wiener functionals).

Asymptotic Analysis for Functional Stochastic Differential Equations

Asymptotic Analysis for Functional Stochastic Differential Equations
Author :
Publisher : Springer
Total Pages : 159
Release :
ISBN-10 : 9783319469799
ISBN-13 : 3319469797
Rating : 4/5 (99 Downloads)

Book Synopsis Asymptotic Analysis for Functional Stochastic Differential Equations by : Jianhai Bao

Download or read book Asymptotic Analysis for Functional Stochastic Differential Equations written by Jianhai Bao and published by Springer. This book was released on 2016-11-19 with total page 159 pages. Available in PDF, EPUB and Kindle. Book excerpt: This brief treats dynamical systems that involve delays and random disturbances. The study is motivated by a wide variety of systems in real life in which random noise has to be taken into consideration and the effect of delays cannot be ignored. Concentrating on such systems that are described by functional stochastic differential equations, this work focuses on the study of large time behavior, in particular, ergodicity.This brief is written for probabilists, applied mathematicians, engineers, and scientists who need to use delay systems and functional stochastic differential equations in their work. Selected topics from the brief can also be used in a graduate level topics course in probability and stochastic processes.

Stochastic Analysis

Stochastic Analysis
Author :
Publisher : Springer Nature
Total Pages : 218
Release :
ISBN-10 : 9789811588648
ISBN-13 : 9811588643
Rating : 4/5 (48 Downloads)

Book Synopsis Stochastic Analysis by : Shigeo Kusuoka

Download or read book Stochastic Analysis written by Shigeo Kusuoka and published by Springer Nature. This book was released on 2020-10-20 with total page 218 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is intended for university seniors and graduate students majoring in probability theory or mathematical finance. In the first chapter, results in probability theory are reviewed. Then, it follows a discussion of discrete-time martingales, continuous time square integrable martingales (particularly, continuous martingales of continuous paths), stochastic integrations with respect to continuous local martingales, and stochastic differential equations driven by Brownian motions. In the final chapter, applications to mathematical finance are given. The preliminary knowledge needed by the reader is linear algebra and measure theory. Rigorous proofs are provided for theorems, propositions, and lemmas. In this book, the definition of conditional expectations is slightly different than what is usually found in other textbooks. For the Doob–Meyer decomposition theorem, only square integrable submartingales are considered, and only elementary facts of the square integrable functions are used in the proof. In stochastic differential equations, the Euler–Maruyama approximation is used mainly to prove the uniqueness of martingale problems and the smoothness of solutions of stochastic differential equations.

Stochastic Processes and Applications

Stochastic Processes and Applications
Author :
Publisher : Springer
Total Pages : 345
Release :
ISBN-10 : 9781493913237
ISBN-13 : 1493913239
Rating : 4/5 (37 Downloads)

Book Synopsis Stochastic Processes and Applications by : Grigorios A. Pavliotis

Download or read book Stochastic Processes and Applications written by Grigorios A. Pavliotis and published by Springer. This book was released on 2014-11-19 with total page 345 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents various results and techniques from the theory of stochastic processes that are useful in the study of stochastic problems in the natural sciences. The main focus is analytical methods, although numerical methods and statistical inference methodologies for studying diffusion processes are also presented. The goal is the development of techniques that are applicable to a wide variety of stochastic models that appear in physics, chemistry and other natural sciences. Applications such as stochastic resonance, Brownian motion in periodic potentials and Brownian motors are studied and the connection between diffusion processes and time-dependent statistical mechanics is elucidated. The book contains a large number of illustrations, examples, and exercises. It will be useful for graduate-level courses on stochastic processes for students in applied mathematics, physics and engineering. Many of the topics covered in this book (reversible diffusions, convergence to equilibrium for diffusion processes, inference methods for stochastic differential equations, derivation of the generalized Langevin equation, exit time problems) cannot be easily found in textbook form and will be useful to both researchers and students interested in the applications of stochastic processes.

Introduction to Stochastic Analysis and Malliavin Calculus

Introduction to Stochastic Analysis and Malliavin Calculus
Author :
Publisher : Springer
Total Pages : 286
Release :
ISBN-10 : 9788876424991
ISBN-13 : 8876424997
Rating : 4/5 (91 Downloads)

Book Synopsis Introduction to Stochastic Analysis and Malliavin Calculus by : Giuseppe Da Prato

Download or read book Introduction to Stochastic Analysis and Malliavin Calculus written by Giuseppe Da Prato and published by Springer. This book was released on 2014-07-01 with total page 286 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents an introductory course on differential stochastic equations and Malliavin calculus. The material of the book has grown out of a series of courses delivered at the Scuola Normale Superiore di Pisa (and also at the Trento and Funchal Universities) and has been refined over several years of teaching experience in the subject. The lectures are addressed to a reader who is familiar with basic notions of measure theory and functional analysis. The first part is devoted to the Gaussian measure in a separable Hilbert space, the Malliavin derivative, the construction of the Brownian motion and Itô's formula. The second part deals with differential stochastic equations and their connection with parabolic problems. The third part provides an introduction to the Malliavin calculus. Several applications are given, notably the Feynman-Kac, Girsanov and Clark-Ocone formulae, the Krylov-Bogoliubov and Von Neumann theorems. In this third edition several small improvements are added and a new section devoted to the differentiability of the Feynman-Kac semigroup is introduced. A considerable number of corrections and improvements have been made.