Introduction to Stochastic Programming

Introduction to Stochastic Programming
Author :
Publisher : Springer Science & Business Media
Total Pages : 427
Release :
ISBN-10 : 9780387226187
ISBN-13 : 0387226184
Rating : 4/5 (87 Downloads)

Book Synopsis Introduction to Stochastic Programming by : John R. Birge

Download or read book Introduction to Stochastic Programming written by John R. Birge and published by Springer Science & Business Media. This book was released on 2006-04-06 with total page 427 pages. Available in PDF, EPUB and Kindle. Book excerpt: This rapidly developing field encompasses many disciplines including operations research, mathematics, and probability. Conversely, it is being applied in a wide variety of subjects ranging from agriculture to financial planning and from industrial engineering to computer networks. This textbook provides a first course in stochastic programming suitable for students with a basic knowledge of linear programming, elementary analysis, and probability. The authors present a broad overview of the main themes and methods of the subject, thus helping students develop an intuition for how to model uncertainty into mathematical problems, what uncertainty changes bring to the decision process, and what techniques help to manage uncertainty in solving the problems. The early chapters introduce some worked examples of stochastic programming, demonstrate how a stochastic model is formally built, develop the properties of stochastic programs and the basic solution techniques used to solve them. The book then goes on to cover approximation and sampling techniques and is rounded off by an in-depth case study. A well-paced and wide-ranging introduction to this subject.

Stochastic Linear Programming

Stochastic Linear Programming
Author :
Publisher : Springer Science & Business Media
Total Pages : 439
Release :
ISBN-10 : 9781441977298
ISBN-13 : 1441977295
Rating : 4/5 (98 Downloads)

Book Synopsis Stochastic Linear Programming by : Peter Kall

Download or read book Stochastic Linear Programming written by Peter Kall and published by Springer Science & Business Media. This book was released on 2010-11-02 with total page 439 pages. Available in PDF, EPUB and Kindle. Book excerpt: This new edition of Stochastic Linear Programming: Models, Theory and Computation has been brought completely up to date, either dealing with or at least referring to new material on models and methods, including DEA with stochastic outputs modeled via constraints on special risk functions (generalizing chance constraints, ICC’s and CVaR constraints), material on Sharpe-ratio, and Asset Liability Management models involving CVaR in a multi-stage setup. To facilitate use as a text, exercises are included throughout the book, and web access is provided to a student version of the authors’ SLP-IOR software. Additionally, the authors have updated the Guide to Available Software, and they have included newer algorithms and modeling systems for SLP. The book is thus suitable as a text for advanced courses in stochastic optimization, and as a reference to the field. From Reviews of the First Edition: "The book presents a comprehensive study of stochastic linear optimization problems and their applications. ... The presentation includes geometric interpretation, linear programming duality, and the simplex method in its primal and dual forms. ... The authors have made an effort to collect ... the most useful recent ideas and algorithms in this area. ... A guide to the existing software is included as well." (Darinka Dentcheva, Mathematical Reviews, Issue 2006 c) "This is a graduate text in optimisation whose main emphasis is in stochastic programming. The book is clearly written. ... This is a good book for providing mathematicians, economists and engineers with an almost complete start up information for working in the field. I heartily welcome its publication. ... It is evident that this book will constitute an obligatory reference source for the specialists of the field." (Carlos Narciso Bouza Herrera, Zentralblatt MATH, Vol. 1104 (6), 2007)

Stochastic Decomposition

Stochastic Decomposition
Author :
Publisher : Springer Science & Business Media
Total Pages : 237
Release :
ISBN-10 : 9781461541158
ISBN-13 : 1461541158
Rating : 4/5 (58 Downloads)

Book Synopsis Stochastic Decomposition by : Julia L. Higle

Download or read book Stochastic Decomposition written by Julia L. Higle and published by Springer Science & Business Media. This book was released on 2013-11-27 with total page 237 pages. Available in PDF, EPUB and Kindle. Book excerpt: Motivation Stochastic Linear Programming with recourse represents one of the more widely applicable models for incorporating uncertainty within in which the SLP optimization models. There are several arenas model is appropriate, and such models have found applications in air line yield management, capacity planning, electric power generation planning, financial planning, logistics, telecommunications network planning, and many more. In some of these applications, modelers represent uncertainty in terms of only a few seenarios and formulate a large scale linear program which is then solved using LP software. However, there are many applications, such as the telecommunications planning problem discussed in this book, where a handful of seenarios do not capture variability well enough to provide a reasonable model of the actual decision-making problem. Problems of this type easily exceed the capabilities of LP software by several orders of magnitude. Their solution requires the use of algorithmic methods that exploit the structure of the SLP model in a manner that will accommodate large scale applications.

Stochastic Linear Programming

Stochastic Linear Programming
Author :
Publisher : Springer Science & Business Media
Total Pages : 103
Release :
ISBN-10 : 9783642662522
ISBN-13 : 3642662528
Rating : 4/5 (22 Downloads)

Book Synopsis Stochastic Linear Programming by : P. Kall

Download or read book Stochastic Linear Programming written by P. Kall and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 103 pages. Available in PDF, EPUB and Kindle. Book excerpt: Todaymanyeconomists, engineers and mathematicians are familiar with linear programming and are able to apply it. This is owing to the following facts: during the last 25 years efficient methods have been developed; at the same time sufficient computer capacity became available; finally, in many different fields, linear programs have turned out to be appropriate models for solving practical problems. However, to apply the theory and the methods of linear programming, it is required that the data determining a linear program be fixed known numbers. This condition is not fulfilled in many practical situations, e. g. when the data are demands, technological coefficients, available capacities, cost rates and so on. It may happen that such data are random variables. In this case, it seems to be common practice to replace these random variables by their mean values and solve the resulting linear program. By 1960 various authors had already recog nized that this approach is unsound: between 1955 and 1960 there were such papers as "Linear Programming under Uncertainty", "Stochastic Linear Pro gramming with Applications to Agricultural Economics", "Chance Constrained Programming", "Inequalities for Stochastic Linear Programming Problems" and "An Approach to Linear Programming under Uncertainty".

Stochastic Programming

Stochastic Programming
Author :
Publisher : Springer Nature
Total Pages : 255
Release :
ISBN-10 : 9783030292195
ISBN-13 : 3030292193
Rating : 4/5 (95 Downloads)

Book Synopsis Stochastic Programming by : Willem K. Klein Haneveld

Download or read book Stochastic Programming written by Willem K. Klein Haneveld and published by Springer Nature. This book was released on 2019-10-24 with total page 255 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an essential introduction to Stochastic Programming, especially intended for graduate students. The book begins by exploring a linear programming problem with random parameters, representing a decision problem under uncertainty. Several models for this problem are presented, including the main ones used in Stochastic Programming: recourse models and chance constraint models. The book not only discusses the theoretical properties of these models and algorithms for solving them, but also explains the intrinsic differences between the models. In the book’s closing section, several case studies are presented, helping students apply the theory covered to practical problems. The book is based on lecture notes developed for an Econometrics and Operations Research course for master students at the University of Groningen, the Netherlands - the longest-standing Stochastic Programming course worldwide.

Lectures on Stochastic Programming

Lectures on Stochastic Programming
Author :
Publisher : SIAM
Total Pages : 447
Release :
ISBN-10 : 9780898718751
ISBN-13 : 0898718759
Rating : 4/5 (51 Downloads)

Book Synopsis Lectures on Stochastic Programming by : Alexander Shapiro

Download or read book Lectures on Stochastic Programming written by Alexander Shapiro and published by SIAM. This book was released on 2009-01-01 with total page 447 pages. Available in PDF, EPUB and Kindle. Book excerpt: Optimization problems involving stochastic models occur in almost all areas of science and engineering, such as telecommunications, medicine, and finance. Their existence compels a need for rigorous ways of formulating, analyzing, and solving such problems. This book focuses on optimization problems involving uncertain parameters and covers the theoretical foundations and recent advances in areas where stochastic models are available. Readers will find coverage of the basic concepts of modeling these problems, including recourse actions and the nonanticipativity principle. The book also includes the theory of two-stage and multistage stochastic programming problems; the current state of the theory on chance (probabilistic) constraints, including the structure of the problems, optimality theory, and duality; and statistical inference in and risk-averse approaches to stochastic programming.

Stochastic Linear Programming

Stochastic Linear Programming
Author :
Publisher : Springer Science & Business Media
Total Pages : 416
Release :
ISBN-10 : 0387233857
ISBN-13 : 9780387233857
Rating : 4/5 (57 Downloads)

Book Synopsis Stochastic Linear Programming by : Peter Kall

Download or read book Stochastic Linear Programming written by Peter Kall and published by Springer Science & Business Media. This book was released on 2005 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: CONTENIDO: Basic - Linear Programming Prerequisites - Nonlinear Programming Prerequisites - Single-Stage SLP models - Models involving probability functions - Quantile functions, Value at Risk - Models based on expectation - Models built with deviation measures - Modeling risk and opportunity - Risk measures - Multi-stage SLP models - The general SLP with recourse - The two-stage SLP - The multi-stage SLP - Algorithms - Single-stage models with separate probability functions - Single-stage models with joint probability functions - Single-stage models based on expectation - Single-stage models involving VaR - Single-stage models with deviation measures - Two-stage recourse models - Multistage recourse models - Modeling systems for SLP.