Statistics for Spatial Data

Statistics for Spatial Data
Author :
Publisher : John Wiley & Sons
Total Pages : 931
Release :
ISBN-10 : 9781119115182
ISBN-13 : 1119115183
Rating : 4/5 (82 Downloads)

Book Synopsis Statistics for Spatial Data by : Noel Cressie

Download or read book Statistics for Spatial Data written by Noel Cressie and published by John Wiley & Sons. This book was released on 2015-03-18 with total page 931 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Wiley Classics Library consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. Spatial statistics — analyzing spatial data through statistical models — has proven exceptionally versatile, encompassing problems ranging from the microscopic to the astronomic. However, for the scientist and engineer faced only with scattered and uneven treatments of the subject in the scientific literature, learning how to make practical use of spatial statistics in day-to-day analytical work is very difficult. Designed exclusively for scientists eager to tap into the enormous potential of this analytical tool and upgrade their range of technical skills, Statistics for Spatial Data is a comprehensive, single-source guide to both the theory and applied aspects of spatial statistical methods. The hard-cover edition was hailed by Mathematical Reviews as an "excellent book which will become a basic reference." This paper-back edition of the 1993 edition, is designed to meet the many technological challenges facing the scientist and engineer. Concentrating on the three areas of geostatistical data, lattice data, and point patterns, the book sheds light on the link between data and model, revealing how design, inference, and diagnostics are an outgrowth of that link. It then explores new methods to reveal just how spatial statistical models can be used to solve important problems in a host of areas in science and engineering. Discussion includes: Exploratory spatial data analysis Spectral theory for stationary processes Spatial scale Simulation methods for spatial processes Spatial bootstrapping Statistical image analysis and remote sensing Computational aspects of model fitting Application of models to disease mapping Designed to accommodate the practical needs of the professional, it features a unified and common notation for its subject as well as many detailed examples woven into the text, numerous illustrations (including graphs that illuminate the theory discussed) and over 1,000 references. Fully balancing theory with applications, Statistics for Spatial Data, Revised Edition is an exceptionally clear guide on making optimal use of one of the ascendant analytical tools of the decade, one that has begun to capture the imagination of professionals in biology, earth science, civil, electrical, and agricultural engineering, geography, epidemiology, and ecology.

Statistics for Spatial Data

Statistics for Spatial Data
Author :
Publisher : John Wiley & Sons
Total Pages : 933
Release :
ISBN-10 : 9781119114611
ISBN-13 : 1119114616
Rating : 4/5 (11 Downloads)

Book Synopsis Statistics for Spatial Data by : Noel Cressie

Download or read book Statistics for Spatial Data written by Noel Cressie and published by John Wiley & Sons. This book was released on 2015-07-27 with total page 933 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Wiley Classics Library consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. Spatial statistics — analyzing spatial data through statistical models — has proven exceptionally versatile, encompassing problems ranging from the microscopic to the astronomic. However, for the scientist and engineer faced only with scattered and uneven treatments of the subject in the scientific literature, learning how to make practical use of spatial statistics in day-to-day analytical work is very difficult. Designed exclusively for scientists eager to tap into the enormous potential of this analytical tool and upgrade their range of technical skills, Statistics for Spatial Data is a comprehensive, single-source guide to both the theory and applied aspects of spatial statistical methods. The hard-cover edition was hailed by Mathematical Reviews as an "excellent book which will become a basic reference." This paper-back edition of the 1993 edition, is designed to meet the many technological challenges facing the scientist and engineer. Concentrating on the three areas of geostatistical data, lattice data, and point patterns, the book sheds light on the link between data and model, revealing how design, inference, and diagnostics are an outgrowth of that link. It then explores new methods to reveal just how spatial statistical models can be used to solve important problems in a host of areas in science and engineering. Discussion includes: Exploratory spatial data analysis Spectral theory for stationary processes Spatial scale Simulation methods for spatial processes Spatial bootstrapping Statistical image analysis and remote sensing Computational aspects of model fitting Application of models to disease mapping Designed to accommodate the practical needs of the professional, it features a unified and common notation for its subject as well as many detailed examples woven into the text, numerous illustrations (including graphs that illuminate the theory discussed) and over 1,000 references. Fully balancing theory with applications, Statistics for Spatial Data, Revised Edition is an exceptionally clear guide on making optimal use of one of the ascendant analytical tools of the decade, one that has begun to capture the imagination of professionals in biology, earth science, civil, electrical, and agricultural engineering, geography, epidemiology, and ecology.

Handbook of Spatial Statistics

Handbook of Spatial Statistics
Author :
Publisher : CRC Press
Total Pages : 622
Release :
ISBN-10 : 9781420072884
ISBN-13 : 1420072889
Rating : 4/5 (84 Downloads)

Book Synopsis Handbook of Spatial Statistics by : Alan E. Gelfand

Download or read book Handbook of Spatial Statistics written by Alan E. Gelfand and published by CRC Press. This book was released on 2010-03-19 with total page 622 pages. Available in PDF, EPUB and Kindle. Book excerpt: Assembling a collection of very prominent researchers in the field, the Handbook of Spatial Statistics presents a comprehensive treatment of both classical and state-of-the-art aspects of this maturing area. It takes a unified, integrated approach to the material, providing cross-references among chapters.The handbook begins with a historical intro

Statistical Methods for Spatial Data Analysis

Statistical Methods for Spatial Data Analysis
Author :
Publisher : CRC Press
Total Pages : 584
Release :
ISBN-10 : 9780203491980
ISBN-13 : 020349198X
Rating : 4/5 (80 Downloads)

Book Synopsis Statistical Methods for Spatial Data Analysis by : Oliver Schabenberger

Download or read book Statistical Methods for Spatial Data Analysis written by Oliver Schabenberger and published by CRC Press. This book was released on 2004-12-20 with total page 584 pages. Available in PDF, EPUB and Kindle. Book excerpt: Understanding spatial statistics requires tools from applied and mathematical statistics, linear model theory, regression, time series, and stochastic processes. It also requires a mindset that focuses on the unique characteristics of spatial data and the development of specialized analytical tools designed explicitly for spatial data analysis. Statistical Methods for Spatial Data Analysis answers the demand for a text that incorporates all of these factors by presenting a balanced exposition that explores both the theoretical foundations of the field of spatial statistics as well as practical methods for the analysis of spatial data. This book is a comprehensive and illustrative treatment of basic statistical theory and methods for spatial data analysis, employing a model-based and frequentist approach that emphasizes the spatial domain. It introduces essential tools and approaches including: measures of autocorrelation and their role in data analysis; the background and theoretical framework supporting random fields; the analysis of mapped spatial point patterns; estimation and modeling of the covariance function and semivariogram; a comprehensive treatment of spatial analysis in the spectral domain; and spatial prediction and kriging. The volume also delivers a thorough analysis of spatial regression, providing a detailed development of linear models with uncorrelated errors, linear models with spatially-correlated errors and generalized linear mixed models for spatial data. It succinctly discusses Bayesian hierarchical models and concludes with reviews on simulating random fields, non-stationary covariance, and spatio-temporal processes. Additional material on the CRC Press website supplements the content of this book. The site provides data sets used as examples in the text, software code that can be used to implement many of the principal methods described and illustrated, and updates to the text itself.

Applied Spatial Statistics for Public Health Data

Applied Spatial Statistics for Public Health Data
Author :
Publisher : John Wiley & Sons
Total Pages : 522
Release :
ISBN-10 : 9780471662679
ISBN-13 : 0471662674
Rating : 4/5 (79 Downloads)

Book Synopsis Applied Spatial Statistics for Public Health Data by : Lance A. Waller

Download or read book Applied Spatial Statistics for Public Health Data written by Lance A. Waller and published by John Wiley & Sons. This book was released on 2004-07-29 with total page 522 pages. Available in PDF, EPUB and Kindle. Book excerpt: While mapped data provide a common ground for discussions between the public, the media, regulatory agencies, and public health researchers, the analysis of spatially referenced data has experienced a phenomenal growth over the last two decades, thanks in part to the development of geographical information systems (GISs). This is the first thorough overview to integrate spatial statistics with data management and the display capabilities of GIS. It describes methods for assessing the likelihood of observed patterns and quantifying the link between exposures and outcomes in spatially correlated data. This introductory text is designed to serve as both an introduction for the novice and a reference for practitioners in the field Requires only minimal background in public health and only some knowledge of statistics through multiple regression Touches upon some advanced topics, such as random effects, hierarchical models and spatial point processes, but does not require prior exposure Includes lavish use of figures/illustrations throughout the volume as well as analyses of several data sets (in the form of "data breaks") Exercises based on data analyses reinforce concepts

Spatial Statistics and Modeling

Spatial Statistics and Modeling
Author :
Publisher : Springer Science & Business Media
Total Pages : 308
Release :
ISBN-10 : 9780387922577
ISBN-13 : 0387922571
Rating : 4/5 (77 Downloads)

Book Synopsis Spatial Statistics and Modeling by : Carlo Gaetan

Download or read book Spatial Statistics and Modeling written by Carlo Gaetan and published by Springer Science & Business Media. This book was released on 2009-11-10 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: Spatial statistics are useful in subjects as diverse as climatology, ecology, economics, environmental and earth sciences, epidemiology, image analysis and more. This book covers the best-known spatial models for three types of spatial data: geostatistical data (stationarity, intrinsic models, variograms, spatial regression and space-time models), areal data (Gibbs-Markov fields and spatial auto-regression) and point pattern data (Poisson, Cox, Gibbs and Markov point processes). The level is relatively advanced, and the presentation concise but complete. The most important statistical methods and their asymptotic properties are described, including estimation in geostatistics, autocorrelation and second-order statistics, maximum likelihood methods, approximate inference using the pseudo-likelihood or Monte-Carlo simulations, statistics for point processes and Bayesian hierarchical models. A chapter is devoted to Markov Chain Monte Carlo simulation (Gibbs sampler, Metropolis-Hastings algorithms and exact simulation). A large number of real examples are studied with R, and each chapter ends with a set of theoretical and applied exercises. While a foundation in probability and mathematical statistics is assumed, three appendices introduce some necessary background. The book is accessible to senior undergraduate students with a solid math background and Ph.D. students in statistics. Furthermore, experienced statisticians and researchers in the above-mentioned fields will find the book valuable as a mathematically sound reference. This book is the English translation of Modélisation et Statistique Spatiales published by Springer in the series Mathématiques & Applications, a series established by Société de Mathématiques Appliquées et Industrielles (SMAI).

Applied Spatial Data Analysis with R

Applied Spatial Data Analysis with R
Author :
Publisher : Springer Science & Business Media
Total Pages : 414
Release :
ISBN-10 : 9781461476184
ISBN-13 : 1461476186
Rating : 4/5 (84 Downloads)

Book Synopsis Applied Spatial Data Analysis with R by : Roger S. Bivand

Download or read book Applied Spatial Data Analysis with R written by Roger S. Bivand and published by Springer Science & Business Media. This book was released on 2013-06-21 with total page 414 pages. Available in PDF, EPUB and Kindle. Book excerpt: Applied Spatial Data Analysis with R, second edition, is divided into two basic parts, the first presenting R packages, functions, classes and methods for handling spatial data. This part is of interest to users who need to access and visualise spatial data. Data import and export for many file formats for spatial data are covered in detail, as is the interface between R and the open source GRASS GIS and the handling of spatio-temporal data. The second part showcases more specialised kinds of spatial data analysis, including spatial point pattern analysis, interpolation and geostatistics, areal data analysis and disease mapping. The coverage of methods of spatial data analysis ranges from standard techniques to new developments, and the examples used are largely taken from the spatial statistics literature. All the examples can be run using R contributed packages available from the CRAN website, with code and additional data sets from the book's own website. Compared to the first edition, the second edition covers the more systematic approach towards handling spatial data in R, as well as a number of important and widely used CRAN packages that have appeared since the first edition. This book will be of interest to researchers who intend to use R to handle, visualise, and analyse spatial data. It will also be of interest to spatial data analysts who do not use R, but who are interested in practical aspects of implementing software for spatial data analysis. It is a suitable companion book for introductory spatial statistics courses and for applied methods courses in a wide range of subjects using spatial data, including human and physical geography, geographical information science and geoinformatics, the environmental sciences, ecology, public health and disease control, economics, public administration and political science. The book has a website where complete code examples, data sets, and other support material may be found: http://www.asdar-book.org. The authors have taken part in writing and maintaining software for spatial data handling and analysis with R in concert since 2003.