Spectral Theory of Infinite-Area Hyperbolic Surfaces

Spectral Theory of Infinite-Area Hyperbolic Surfaces
Author :
Publisher : Birkhäuser
Total Pages : 471
Release :
ISBN-10 : 9783319338774
ISBN-13 : 3319338773
Rating : 4/5 (74 Downloads)

Book Synopsis Spectral Theory of Infinite-Area Hyperbolic Surfaces by : David Borthwick

Download or read book Spectral Theory of Infinite-Area Hyperbolic Surfaces written by David Borthwick and published by Birkhäuser. This book was released on 2016-07-12 with total page 471 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text introduces geometric spectral theory in the context of infinite-area Riemann surfaces, providing a comprehensive account of the most recent developments in the field. For the second edition the context has been extended to general surfaces with hyperbolic ends, which provides a natural setting for development of the spectral theory while still keeping technical difficulties to a minimum. All of the material from the first edition is included and updated, and new sections have been added. Topics covered include an introduction to the geometry of hyperbolic surfaces, analysis of the resolvent of the Laplacian, scattering theory, resonances and scattering poles, the Selberg zeta function, the Poisson formula, distribution of resonances, the inverse scattering problem, Patterson-Sullivan theory, and the dynamical approach to the zeta function. The new sections cover the latest developments in the field, including the spectral gap, resonance asymptotics near the critical line, and sharp geometric constants for resonance bounds. A new chapter introduces recently developed techniques for resonance calculation that illuminate the existing results and conjectures on resonance distribution. The spectral theory of hyperbolic surfaces is a point of intersection for a great variety of areas, including quantum physics, discrete groups, differential geometry, number theory, complex analysis, and ergodic theory. This book will serve as a valuable resource for graduate students and researchers from these and other related fields. Review of the first edition: "The exposition is very clear and thorough, and essentially self-contained; the proofs are detailed...The book gathers together some material which is not always easily available in the literature...To conclude, the book is certainly at a level accessible to graduate students and researchers from a rather large range of fields. Clearly, the reader...would certainly benefit greatly from it." (Colin Guillarmou, Mathematical Reviews, Issue 2008 h)

Spectral Geometry

Spectral Geometry
Author :
Publisher : American Mathematical Soc.
Total Pages : 354
Release :
ISBN-10 : 9780821853191
ISBN-13 : 0821853198
Rating : 4/5 (91 Downloads)

Book Synopsis Spectral Geometry by : Alex Barnett

Download or read book Spectral Geometry written by Alex Barnett and published by American Mathematical Soc.. This book was released on 2012 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the proceedings of the International Conference on Spectral Geometry, held July 19-23, 2010, at Dartmouth College, Dartmouth, New Hampshire. Eigenvalue problems involving the Laplace operator on manifolds have proven to be a consistently fertile area of geometric analysis with deep connections to number theory, physics, and applied mathematics. Key questions include the measures to which eigenfunctions of the Laplacian on a Riemannian manifold condense in the limit of large eigenvalue, and the extent to which the eigenvalues and eigenfunctions of a manifold encode its geometry. In this volume, research and expository articles, including those of the plenary speakers Peter Sarnak and Victor Guillemin, address the flurry of recent progress in such areas as quantum unique ergodicity, isospectrality, semiclassical measures, the geometry of nodal lines of eigenfunctions, methods of numerical computation, and spectra of quantum graphs. This volume also contains mini-courses on spectral theory for hyperbolic surfaces, semiclassical analysis, and orbifold spectral geometry that prepared the participants, especially graduate students and young researchers, for conference lectures.

Spectral Theory and Mathematical Physics: A Festschrift in Honor of Barry Simon's 60th Birthday

Spectral Theory and Mathematical Physics: A Festschrift in Honor of Barry Simon's 60th Birthday
Author :
Publisher : American Mathematical Soc.
Total Pages : 528
Release :
ISBN-10 : 9780821842485
ISBN-13 : 082184248X
Rating : 4/5 (85 Downloads)

Book Synopsis Spectral Theory and Mathematical Physics: A Festschrift in Honor of Barry Simon's 60th Birthday by : Fritz Gesztesy

Download or read book Spectral Theory and Mathematical Physics: A Festschrift in Honor of Barry Simon's 60th Birthday written by Fritz Gesztesy and published by American Mathematical Soc.. This book was released on 2007 with total page 528 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Festschrift had its origins in a conference called SimonFest held at Caltech, March 27-31, 2006, to honor Barry Simon's 60th birthday. It is not a proceedings volume in the usual sense since the emphasis of the majority of the contributions is on reviews of the state of the art of certain fields, with particular focus on recent developments and open problems. The bulk of the articles in this Festschrift are of this survey form, and a few review Simon's contributions to aparticular area. Part 1 contains surveys in the areas of Quantum Field Theory, Statistical Mechanics, Nonrelativistic Two-Body and $N$-Body Quantum Systems, Resonances, Quantum Mechanics with Electric and Magnetic Fields, and the Semiclassical Limit. Part 2 contains surveys in the areas of Random andErgodic Schrodinger Operators, Singular Continuous Spectrum, Orthogonal Polynomials, and Inverse Spectral Theory. In several cases, this collection of surveys portrays both the history of a subject and its current state of the art. A substantial part of the contributions to this Festschrift are survey articles on the state of the art of certain areas with special emphasis on open problems. This will benefit graduate students as well as researchers who want to get a quick, yet comprehensiveintroduction into an area covered in this volume.

Spectral Theory

Spectral Theory
Author :
Publisher : Springer Nature
Total Pages : 339
Release :
ISBN-10 : 9783030380021
ISBN-13 : 3030380025
Rating : 4/5 (21 Downloads)

Book Synopsis Spectral Theory by : David Borthwick

Download or read book Spectral Theory written by David Borthwick and published by Springer Nature. This book was released on 2020-03-12 with total page 339 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook offers a concise introduction to spectral theory, designed for newcomers to functional analysis. Curating the content carefully, the author builds to a proof of the spectral theorem in the early part of the book. Subsequent chapters illustrate a variety of application areas, exploring key examples in detail. Readers looking to delve further into specialized topics will find ample references to classic and recent literature. Beginning with a brief introduction to functional analysis, the text focuses on unbounded operators and separable Hilbert spaces as the essential tools needed for the subsequent theory. A thorough discussion of the concepts of spectrum and resolvent follows, leading to a complete proof of the spectral theorem for unbounded self-adjoint operators. Applications of spectral theory to differential operators comprise the remaining four chapters. These chapters introduce the Dirichlet Laplacian operator, Schrödinger operators, operators on graphs, and the spectral theory of Riemannian manifolds. Spectral Theory offers a uniquely accessible introduction to ideas that invite further study in any number of different directions. A background in real and complex analysis is assumed; the author presents the requisite tools from functional analysis within the text. This introductory treatment would suit a functional analysis course intended as a pathway to linear PDE theory. Independent later chapters allow for flexibility in selecting applications to suit specific interests within a one-semester course.

Mathematical Theory of Scattering Resonances

Mathematical Theory of Scattering Resonances
Author :
Publisher : American Mathematical Soc.
Total Pages : 649
Release :
ISBN-10 : 9781470443665
ISBN-13 : 147044366X
Rating : 4/5 (65 Downloads)

Book Synopsis Mathematical Theory of Scattering Resonances by : Semyon Dyatlov

Download or read book Mathematical Theory of Scattering Resonances written by Semyon Dyatlov and published by American Mathematical Soc.. This book was released on 2019-09-10 with total page 649 pages. Available in PDF, EPUB and Kindle. Book excerpt: Scattering resonances generalize bound states/eigenvalues for systems in which energy can scatter to infinity. A typical resonance has a rate of oscillation (just as a bound state does) and a rate of decay. Although the notion is intrinsically dynamical, an elegant mathematical formulation comes from considering meromorphic continuations of Green's functions. The poles of these meromorphic continuations capture physical information by identifying the rate of oscillation with the real part of a pole and the rate of decay with its imaginary part. An example from mathematics is given by the zeros of the Riemann zeta function: they are, essentially, the resonances of the Laplacian on the modular surface. The Riemann hypothesis then states that the decay rates for the modular surface are all either or . An example from physics is given by quasi-normal modes of black holes which appear in long-time asymptotics of gravitational waves. This book concentrates mostly on the simplest case of scattering by compactly supported potentials but provides pointers to modern literature where more general cases are studied. It also presents a recent approach to the study of resonances on asymptotically hyperbolic manifolds. The last two chapters are devoted to semiclassical methods in the study of resonances.

Mathematical Quantum Theory II: Schrodinger Operators

Mathematical Quantum Theory II: Schrodinger Operators
Author :
Publisher : American Mathematical Soc.
Total Pages : 314
Release :
ISBN-10 : 9780821803660
ISBN-13 : 0821803662
Rating : 4/5 (60 Downloads)

Book Synopsis Mathematical Quantum Theory II: Schrodinger Operators by : Joel S. Feldman

Download or read book Mathematical Quantum Theory II: Schrodinger Operators written by Joel S. Feldman and published by American Mathematical Soc.. This book was released on 1995 with total page 314 pages. Available in PDF, EPUB and Kindle. Book excerpt: The articles in this collection constitute the proceedings of the Canadian Mathematical Society Annual Seminar on Mathematical Quantum Theory, held in Vancouver in August 1993. The meeting was run as a research-level summer school concentrating on two related areas of contemporary mathematical physics. The first area, quantum field theory and many-body theory, is covered in volume 1 of these proceedings. The second area, treated in the present volume, is Schrödinger operators. The meeting featured a series of four-hour mini-courses, designed to introduce students to the state of the art in particular areas, and thirty hour-long expository lectures. With contributions from some of the top experts in the field, this book is an important resource for those interested in activity at the frontiers of mathematical quantum theory.

Inverse Problems and Applications

Inverse Problems and Applications
Author :
Publisher : American Mathematical Soc.
Total Pages : 322
Release :
ISBN-10 : 9781470410797
ISBN-13 : 1470410796
Rating : 4/5 (97 Downloads)

Book Synopsis Inverse Problems and Applications by : Plamen Stefanov

Download or read book Inverse Problems and Applications written by Plamen Stefanov and published by American Mathematical Soc.. This book was released on 2014-05-05 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the proceedings of two conferences on Inverse Problems and Applications, held in 2012, to celebrate the work of Gunther Uhlmann. The first conference was held at the University of California, Irvine, from June 18-22, 2012, and the second was held at Zhejiang University, Hangzhou, China, from September 17-21, 2012. The topics covered include inverse problems in medical imaging, scattering theory, geometry and image processing, and the mathematical theory of cloaking, as well as methods related to inverse problems.