Spectral Action in Noncommutative Geometry

Spectral Action in Noncommutative Geometry
Author :
Publisher : Springer
Total Pages : 165
Release :
ISBN-10 : 9783319947884
ISBN-13 : 3319947885
Rating : 4/5 (84 Downloads)

Book Synopsis Spectral Action in Noncommutative Geometry by : Michał Eckstein

Download or read book Spectral Action in Noncommutative Geometry written by Michał Eckstein and published by Springer. This book was released on 2018-12-18 with total page 165 pages. Available in PDF, EPUB and Kindle. Book excerpt: What is spectral action, how to compute it and what are the known examples? This book offers a guided tour through the mathematical habitat of noncommutative geometry à la Connes, deliberately unveiling the answers to these questions. After a brief preface flashing the panorama of the spectral approach, a concise primer on spectral triples is given. Chapter 2 is designed to serve as a toolkit for computations. The third chapter offers an in-depth view into the subtle links between the asymptotic expansions of traces of heat operators and meromorphic extensions of the associated spectral zeta functions. Chapter 4 studies the behaviour of the spectral action under fluctuations by gauge potentials. A subjective list of open problems in the field is spelled out in the fifth Chapter. The book concludes with an appendix including some auxiliary tools from geometry and analysis, along with examples of spectral geometries. The book serves both as a compendium for researchers in the domain of noncommutative geometry and an invitation to mathematical physicists looking for new concepts.

Noncommutative Geometry and Particle Physics

Noncommutative Geometry and Particle Physics
Author :
Publisher : Springer
Total Pages : 246
Release :
ISBN-10 : 9789401791625
ISBN-13 : 9401791627
Rating : 4/5 (25 Downloads)

Book Synopsis Noncommutative Geometry and Particle Physics by : Walter D. van Suijlekom

Download or read book Noncommutative Geometry and Particle Physics written by Walter D. van Suijlekom and published by Springer. This book was released on 2014-07-21 with total page 246 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction to noncommutative geometry and presents a number of its recent applications to particle physics. It is intended for graduate students in mathematics/theoretical physics who are new to the field of noncommutative geometry, as well as for researchers in mathematics/theoretical physics with an interest in the physical applications of noncommutative geometry. In the first part, we introduce the main concepts and techniques by studying finite noncommutative spaces, providing a “light” approach to noncommutative geometry. We then proceed with the general framework by defining and analyzing noncommutative spin manifolds and deriving some main results on them, such as the local index formula. In the second part, we show how noncommutative spin manifolds naturally give rise to gauge theories, applying this principle to specific examples. We subsequently geometrically derive abelian and non-abelian Yang-Mills gauge theories, and eventually the full Standard Model of particle physics, and conclude by explaining how noncommutative geometry might indicate how to proceed beyond the Standard Model.

Noncommutative Geometry, Quantum Fields and Motives

Noncommutative Geometry, Quantum Fields and Motives
Author :
Publisher : American Mathematical Soc.
Total Pages : 810
Release :
ISBN-10 : 9781470450458
ISBN-13 : 1470450453
Rating : 4/5 (58 Downloads)

Book Synopsis Noncommutative Geometry, Quantum Fields and Motives by : Alain Connes

Download or read book Noncommutative Geometry, Quantum Fields and Motives written by Alain Connes and published by American Mathematical Soc.. This book was released on 2019-03-13 with total page 810 pages. Available in PDF, EPUB and Kindle. Book excerpt: The unifying theme of this book is the interplay among noncommutative geometry, physics, and number theory. The two main objects of investigation are spaces where both the noncommutative and the motivic aspects come to play a role: space-time, where the guiding principle is the problem of developing a quantum theory of gravity, and the space of primes, where one can regard the Riemann Hypothesis as a long-standing problem motivating the development of new geometric tools. The book stresses the relevance of noncommutative geometry in dealing with these two spaces. The first part of the book deals with quantum field theory and the geometric structure of renormalization as a Riemann-Hilbert correspondence. It also presents a model of elementary particle physics based on noncommutative geometry. The main result is a complete derivation of the full Standard Model Lagrangian from a very simple mathematical input. Other topics covered in the first part of the book are a noncommutative geometry model of dimensional regularization and its role in anomaly computations, and a brief introduction to motives and their conjectural relation to quantum field theory. The second part of the book gives an interpretation of the Weil explicit formula as a trace formula and a spectral realization of the zeros of the Riemann zeta function. This is based on the noncommutative geometry of the adèle class space, which is also described as the space of commensurability classes of Q-lattices, and is dual to a noncommutative motive (endomotive) whose cyclic homology provides a general setting for spectral realizations of zeros of L-functions. The quantum statistical mechanics of the space of Q-lattices, in one and two dimensions, exhibits spontaneous symmetry breaking. In the low-temperature regime, the equilibrium states of the corresponding systems are related to points of classical moduli spaces and the symmetries to the class field theory of the field of rational numbers and of imaginary quadratic fields, as well as to the automorphisms of the field of modular functions. The book ends with a set of analogies between the noncommutative geometries underlying the mathematical formulation of the Standard Model minimally coupled to gravity and the moduli spaces of Q-lattices used in the study of the zeta function.

Noncommutative Geometry and the Standard Model of Elementary Particle Physics

Noncommutative Geometry and the Standard Model of Elementary Particle Physics
Author :
Publisher : Springer Science & Business Media
Total Pages : 352
Release :
ISBN-10 : 9783540440710
ISBN-13 : 3540440712
Rating : 4/5 (10 Downloads)

Book Synopsis Noncommutative Geometry and the Standard Model of Elementary Particle Physics by : Florian Scheck

Download or read book Noncommutative Geometry and the Standard Model of Elementary Particle Physics written by Florian Scheck and published by Springer Science & Business Media. This book was released on 2002-11-26 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: The outcome of a close collaboration between mathematicians and mathematical physicists, these Lecture Notes present the foundations of A. Connes noncommutative geometry, as well as its applications in particular to the field of theoretical particle physics. The coherent and systematic approach makes this book useful for experienced researchers and postgraduate students alike.

Noncommutative Geometry

Noncommutative Geometry
Author :
Publisher : Springer
Total Pages : 364
Release :
ISBN-10 : 9783540397021
ISBN-13 : 3540397027
Rating : 4/5 (21 Downloads)

Book Synopsis Noncommutative Geometry by : Alain Connes

Download or read book Noncommutative Geometry written by Alain Connes and published by Springer. This book was released on 2003-12-15 with total page 364 pages. Available in PDF, EPUB and Kindle. Book excerpt: Noncommutative Geometry is one of the most deep and vital research subjects of present-day Mathematics. Its development, mainly due to Alain Connes, is providing an increasing number of applications and deeper insights for instance in Foliations, K-Theory, Index Theory, Number Theory but also in Quantum Physics of elementary particles. The purpose of the Summer School in Martina Franca was to offer a fresh invitation to the subject and closely related topics; the contributions in this volume include the four main lectures, cover advanced developments and are delivered by prominent specialists.

An Introduction to Noncommutative Geometry

An Introduction to Noncommutative Geometry
Author :
Publisher : European Mathematical Society
Total Pages : 134
Release :
ISBN-10 : 3037190248
ISBN-13 : 9783037190241
Rating : 4/5 (48 Downloads)

Book Synopsis An Introduction to Noncommutative Geometry by : Joseph C. Várilly

Download or read book An Introduction to Noncommutative Geometry written by Joseph C. Várilly and published by European Mathematical Society. This book was released on 2006 with total page 134 pages. Available in PDF, EPUB and Kindle. Book excerpt: Noncommutative geometry, inspired by quantum physics, describes singular spaces by their noncommutative coordinate algebras and metric structures by Dirac-like operators. Such metric geometries are described mathematically by Connes' theory of spectral triples. These lectures, delivered at an EMS Summer School on noncommutative geometry and its applications, provide an overview of spectral triples based on examples. This introduction is aimed at graduate students of both mathematics and theoretical physics. It deals with Dirac operators on spin manifolds, noncommutative tori, Moyal quantization and tangent groupoids, action functionals, and isospectral deformations. The structural framework is the concept of a noncommutative spin geometry; the conditions on spectral triples which determine this concept are developed in detail. The emphasis throughout is on gaining understanding by computing the details of specific examples. The book provides a middle ground between a comprehensive text and a narrowly focused research monograph. It is intended for self-study, enabling the reader to gain access to the essentials of noncommutative geometry. New features since the original course are an expanded bibliography and a survey of more recent examples and applications of spectral triples.

An Introduction to Noncommutative Spaces and Their Geometries

An Introduction to Noncommutative Spaces and Their Geometries
Author :
Publisher : Springer Science & Business Media
Total Pages : 216
Release :
ISBN-10 : 9783540149491
ISBN-13 : 354014949X
Rating : 4/5 (91 Downloads)

Book Synopsis An Introduction to Noncommutative Spaces and Their Geometries by : Giovanni Landi

Download or read book An Introduction to Noncommutative Spaces and Their Geometries written by Giovanni Landi and published by Springer Science & Business Media. This book was released on 2003-07-01 with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt: These lecture notes are an introduction to several ideas and applications of noncommutative geometry. It starts with a not necessarily commutative but associative algebra which is thought of as the algebra of functions on some 'virtual noncommutative space'. Attention is switched from spaces, which in general do not even exist, to algebras of functions. In these notes, particular emphasis is put on seeing noncommutative spaces as concrete spaces, namely as a collection of points with a topology. The necessary mathematical tools are presented in a systematic and accessible way and include among other things, C'*-algebras, module theory and K-theory, spectral calculus, forms and connection theory. Application to Yang--Mills, fermionic, and gravity models are described. Also the spectral action and the related invariance under automorphism of the algebra is illustrated. Some recent work on noncommutative lattices is presented. These lattices arose as topologically nontrivial approximations to 'contuinuum' topological spaces. They have been used to construct quantum-mechanical and field-theory models, alternative models to lattice gauge theory, with nontrivial topological content. This book will be essential to physicists and mathematicians with an interest in noncommutative geometry and its uses in physics.