Semigroup Methods for Evolution Equations on Networks

Semigroup Methods for Evolution Equations on Networks
Author :
Publisher : Springer
Total Pages : 294
Release :
ISBN-10 : 9783319046211
ISBN-13 : 3319046217
Rating : 4/5 (11 Downloads)

Book Synopsis Semigroup Methods for Evolution Equations on Networks by : Delio Mugnolo

Download or read book Semigroup Methods for Evolution Equations on Networks written by Delio Mugnolo and published by Springer. This book was released on 2014-05-21 with total page 294 pages. Available in PDF, EPUB and Kindle. Book excerpt: This concise text is based on a series of lectures held only a few years ago and originally intended as an introduction to known results on linear hyperbolic and parabolic equations. Yet the topic of differential equations on graphs, ramified spaces, and more general network-like objects has recently gained significant momentum and, well beyond the confines of mathematics, there is a lively interdisciplinary discourse on all aspects of so-called complex networks. Such network-like structures can be found in virtually all branches of science, engineering and the humanities, and future research thus calls for solid theoretical foundations. This book is specifically devoted to the study of evolution equations – i.e., of time-dependent differential equations such as the heat equation, the wave equation, or the Schrödinger equation (quantum graphs) – bearing in mind that the majority of the literature in the last ten years on the subject of differential equations of graphs has been devoted to elliptic equations and related spectral problems. Moreover, for tackling the most general settings - e.g. encoded in the transmission conditions in the network nodes - one classical and elegant tool is that of operator semigroups. This book is simultaneously a very concise introduction to this theory and a handbook on its applications to differential equations on networks. With a more interdisciplinary readership in mind, full proofs of mathematical statements have been frequently omitted in favor of keeping the text as concise, fluid and self-contained as possible. In addition, a brief chapter devoted to the field of neurodynamics of the brain cortex provides a concrete link to ongoing applied research.

Positive Operator Semigroups

Positive Operator Semigroups
Author :
Publisher : Birkhäuser
Total Pages : 366
Release :
ISBN-10 : 9783319428130
ISBN-13 : 3319428136
Rating : 4/5 (30 Downloads)

Book Synopsis Positive Operator Semigroups by : András Bátkai

Download or read book Positive Operator Semigroups written by András Bátkai and published by Birkhäuser. This book was released on 2017-02-13 with total page 366 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives a gentle but up-to-date introduction into the theory of operator semigroups (or linear dynamical systems), which can be used with great success to describe the dynamics of complicated phenomena arising in many applications. Positivity is a property which naturally appears in physical, chemical, biological or economic processes. It adds a beautiful and far reaching mathematical structure to the dynamical systems and operators describing these processes. In the first part, the finite dimensional theory in a coordinate-free way is developed, which is difficult to find in literature. This is a good opportunity to present the main ideas of the Perron-Frobenius theory in a way which can be used in the infinite dimensional situation. Applications to graph matrices, age structured population models and economic models are discussed. The infinite dimensional theory of positive operator semigroups with their spectral and asymptotic theory is developed in the second part. Recent applications illustrate the theory, like population equations, neutron transport theory, delay equations or flows in networks. Each chapter is accompanied by a large set of exercises. An up-to-date bibliography and a detailed subject index help the interested reader. The book is intended primarily for graduate and master students. The finite dimensional part, however, can be followed by an advanced bachelor with a solid knowledge of linear algebra and calculus.

Semigroups of Operators – Theory and Applications

Semigroups of Operators – Theory and Applications
Author :
Publisher : Springer Nature
Total Pages : 446
Release :
ISBN-10 : 9783030460792
ISBN-13 : 3030460797
Rating : 4/5 (92 Downloads)

Book Synopsis Semigroups of Operators – Theory and Applications by : Jacek Banasiak

Download or read book Semigroups of Operators – Theory and Applications written by Jacek Banasiak and published by Springer Nature. This book was released on 2020-06-12 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book features selected and peer-reviewed lectures presented at the 3rd Semigroups of Operators: Theory and Applications Conference, held in Kazimierz Dolny, Poland, in October 2018 to mark the 85th birthday of Jan Kisyński. Held every five years, the conference offers a forum for mathematicians using semigroup theory to discover what is happening outside their particular field of research and helps establish new links between various sub-disciplines of semigroup theory, stochastic processes, differential equations and the applied fields. The book is intended for researchers, postgraduate and senior students working in operator theory, partial differential equations, probability and stochastic processes, analytical methods in biology and other natural sciences, optimisation and optimal control. The theory of semigroups of operators is a well-developed branch of functional analysis. Its foundations were laid at the beginning of the 20th century, while Hille and Yosida’s fundamental generation theorem dates back to the forties. The theory was originally designed as a universal language for partial differential equations and stochastic processes but, at the same time, it started to become an independent branch of operator theory. Today, it still has the same distinctive character: it develops rapidly by posing new ‘internal’ questions and, in answering them, discovering new methods that can be used in applications. On the other hand, it is being influenced by questions from PDE’s and stochastic processes as well as from applied sciences such as mathematical biology and optimal control and, as a result, it continually gathers new momentum. However, many results, both from semigroup theory itself and the applied sciences, are phrased in discipline-specific languages and are hardly known to the broader community.

Discrete and Continuous Models in the Theory of Networks

Discrete and Continuous Models in the Theory of Networks
Author :
Publisher : Springer Nature
Total Pages : 370
Release :
ISBN-10 : 9783030440978
ISBN-13 : 3030440974
Rating : 4/5 (78 Downloads)

Book Synopsis Discrete and Continuous Models in the Theory of Networks by : Fatihcan M. Atay

Download or read book Discrete and Continuous Models in the Theory of Networks written by Fatihcan M. Atay and published by Springer Nature. This book was released on 2020-09-03 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains contributions from the participants of the research group hosted by the ZiF - Center for Interdisciplinary Research at the University of Bielefeld during the period 2013-2017 as well as from the conclusive conference organized at Bielefeld in December 2017. The contributions consist of original research papers: they mirror the scientific developments fostered by this research program or the state-of-the-art results presented during the conclusive conference. The volume covers current research in the areas of operator theory and dynamical systems on networks and their applications, indicating possible future directions. The book will be interesting to researchers focusing on the mathematical theory of networks; it is unique as, for the first time, continuous network models - a subject that has been blooming in the last twenty years - are studied alongside more classical and discrete ones. Thus, instead of two different worlds often growing independently without much intercommunication, a new path is set, breaking with the tradition. The fruitful and beneficial exchange of ideas and results of both communities is reflected in this book.

Convergence of One-Parameter Operator Semigroups

Convergence of One-Parameter Operator Semigroups
Author :
Publisher : Cambridge University Press
Total Pages : 453
Release :
ISBN-10 : 9781316552957
ISBN-13 : 1316552950
Rating : 4/5 (57 Downloads)

Book Synopsis Convergence of One-Parameter Operator Semigroups by : Adam Bobrowski

Download or read book Convergence of One-Parameter Operator Semigroups written by Adam Bobrowski and published by Cambridge University Press. This book was released on 2016-07-14 with total page 453 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a detailed and contemporary account of the classical theory of convergence of semigroups and its more recent development treating the case where the limit semigroup, in contrast to the approximating semigroups, acts merely on a subspace of the original Banach space (this is the case, for example, with singular perturbations). The author demonstrates the far-reaching applications of this theory using real examples from various branches of pure and applied mathematics, with a particular emphasis on mathematical biology. The book may serve as a useful reference, containing a significant number of new results ranging from the analysis of fish populations to signaling pathways in living cells. It comprises many short chapters, which allows readers to pick and choose those topics most relevant to them, and it contains 160 end-of-chapter exercises so that readers can test their understanding of the material as they go along.

Evolution Equations

Evolution Equations
Author :
Publisher : CRC Press
Total Pages : 442
Release :
ISBN-10 : 0824709756
ISBN-13 : 9780824709754
Rating : 4/5 (56 Downloads)

Book Synopsis Evolution Equations by : Gisele Ruiz Goldstein

Download or read book Evolution Equations written by Gisele Ruiz Goldstein and published by CRC Press. This book was released on 2003-06-24 with total page 442 pages. Available in PDF, EPUB and Kindle. Book excerpt: Celebrating the work of renowned mathematician Jerome A. Goldstein, this reference compiles original research on the theory and application of evolution equations to stochastics, physics, engineering, biology, and finance. The text explores a wide range of topics in linear and nonlinear semigroup theory, operator theory, functional analysis, and linear and nonlinear partial differential equations, and studies the latest theoretical developments and uses of evolution equations in a variety of disciplines. Providing nearly 500 references, the book contains discussions by renowned mathematicians such as H. Brezis, G. Da Prato, N.E. Gretskij, I. Lasiecka, Peter Lax, M. M. Rao, and R. Triggiani.

Advances in Non-Archimedean Analysis and Applications

Advances in Non-Archimedean Analysis and Applications
Author :
Publisher : Springer Nature
Total Pages : 326
Release :
ISBN-10 : 9783030819767
ISBN-13 : 3030819760
Rating : 4/5 (67 Downloads)

Book Synopsis Advances in Non-Archimedean Analysis and Applications by : W. A. Zúñiga-Galindo

Download or read book Advances in Non-Archimedean Analysis and Applications written by W. A. Zúñiga-Galindo and published by Springer Nature. This book was released on 2021-12-02 with total page 326 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a broad, interdisciplinary overview of non-Archimedean analysis and its applications. Featuring new techniques developed by leading experts in the field, it highlights the relevance and depth of this important area of mathematics, in particular its expanding reach into the physical, biological, social, and computational sciences as well as engineering and technology. In the last forty years the connections between non-Archimedean mathematics and disciplines such as physics, biology, economics and engineering, have received considerable attention. Ultrametric spaces appear naturally in models where hierarchy plays a central role – a phenomenon known as ultrametricity. In the 80s, the idea of using ultrametric spaces to describe the states of complex systems, with a natural hierarchical structure, emerged in the works of Fraunfelder, Parisi, Stein and others. A central paradigm in the physics of certain complex systems – for instance, proteins – asserts that the dynamics of such a system can be modeled as a random walk on the energy landscape of the system. To construct mathematical models, the energy landscape is approximated by an ultrametric space (a finite rooted tree), and then the dynamics of the system is modeled as a random walk on the leaves of a finite tree. In the same decade, Volovich proposed using ultrametric spaces in physical models dealing with very short distances. This conjecture has led to a large body of research in quantum field theory and string theory. In economics, the non-Archimedean utility theory uses probability measures with values in ordered non-Archimedean fields. Ultrametric spaces are also vital in classification and clustering techniques. Currently, researchers are actively investigating the following areas: p-adic dynamical systems, p-adic techniques in cryptography, p-adic reaction-diffusion equations and biological models, p-adic models in geophysics, stochastic processes in ultrametric spaces, applications of ultrametric spaces in data processing, and more. This contributed volume gathers the latest theoretical developments as well as state-of-the art applications of non-Archimedean analysis. It covers non-Archimedean and non-commutative geometry, renormalization, p-adic quantum field theory and p-adic quantum mechanics, as well as p-adic string theory and p-adic dynamics. Further topics include ultrametric bioinformation, cryptography and bioinformatics in p-adic settings, non-Archimedean spacetime, gravity and cosmology, p-adic methods in spin glasses, and non-Archimedean analysis of mental spaces. By doing so, it highlights new avenues of research in the mathematical sciences, biosciences and computational sciences.