Reinforcement Learning and Approximate Dynamic Programming for Feedback Control

Reinforcement Learning and Approximate Dynamic Programming for Feedback Control
Author :
Publisher : John Wiley & Sons
Total Pages : 498
Release :
ISBN-10 : 9781118453971
ISBN-13 : 1118453972
Rating : 4/5 (71 Downloads)

Book Synopsis Reinforcement Learning and Approximate Dynamic Programming for Feedback Control by : Frank L. Lewis

Download or read book Reinforcement Learning and Approximate Dynamic Programming for Feedback Control written by Frank L. Lewis and published by John Wiley & Sons. This book was released on 2013-01-28 with total page 498 pages. Available in PDF, EPUB and Kindle. Book excerpt: Reinforcement learning (RL) and adaptive dynamic programming (ADP) has been one of the most critical research fields in science and engineering for modern complex systems. This book describes the latest RL and ADP techniques for decision and control in human engineered systems, covering both single player decision and control and multi-player games. Edited by the pioneers of RL and ADP research, the book brings together ideas and methods from many fields and provides an important and timely guidance on controlling a wide variety of systems, such as robots, industrial processes, and economic decision-making.

Approximate Dynamic Programming

Approximate Dynamic Programming
Author :
Publisher : John Wiley & Sons
Total Pages : 487
Release :
ISBN-10 : 9780470182956
ISBN-13 : 0470182954
Rating : 4/5 (56 Downloads)

Book Synopsis Approximate Dynamic Programming by : Warren B. Powell

Download or read book Approximate Dynamic Programming written by Warren B. Powell and published by John Wiley & Sons. This book was released on 2007-10-05 with total page 487 pages. Available in PDF, EPUB and Kindle. Book excerpt: A complete and accessible introduction to the real-world applications of approximate dynamic programming With the growing levels of sophistication in modern-day operations, it is vital for practitioners to understand how to approach, model, and solve complex industrial problems. Approximate Dynamic Programming is a result of the author's decades of experience working in large industrial settings to develop practical and high-quality solutions to problems that involve making decisions in the presence of uncertainty. This groundbreaking book uniquely integrates four distinct disciplines—Markov design processes, mathematical programming, simulation, and statistics—to demonstrate how to successfully model and solve a wide range of real-life problems using the techniques of approximate dynamic programming (ADP). The reader is introduced to the three curses of dimensionality that impact complex problems and is also shown how the post-decision state variable allows for the use of classical algorithmic strategies from operations research to treat complex stochastic optimization problems. Designed as an introduction and assuming no prior training in dynamic programming of any form, Approximate Dynamic Programming contains dozens of algorithms that are intended to serve as a starting point in the design of practical solutions for real problems. The book provides detailed coverage of implementation challenges including: modeling complex sequential decision processes under uncertainty, identifying robust policies, designing and estimating value function approximations, choosing effective stepsize rules, and resolving convergence issues. With a focus on modeling and algorithms in conjunction with the language of mainstream operations research, artificial intelligence, and control theory, Approximate Dynamic Programming: Models complex, high-dimensional problems in a natural and practical way, which draws on years of industrial projects Introduces and emphasizes the power of estimating a value function around the post-decision state, allowing solution algorithms to be broken down into three fundamental steps: classical simulation, classical optimization, and classical statistics Presents a thorough discussion of recursive estimation, including fundamental theory and a number of issues that arise in the development of practical algorithms Offers a variety of methods for approximating dynamic programs that have appeared in previous literature, but that have never been presented in the coherent format of a book Motivated by examples from modern-day operations research, Approximate Dynamic Programming is an accessible introduction to dynamic modeling and is also a valuable guide for the development of high-quality solutions to problems that exist in operations research and engineering. The clear and precise presentation of the material makes this an appropriate text for advanced undergraduate and beginning graduate courses, while also serving as a reference for researchers and practitioners. A companion Web site is available for readers, which includes additional exercises, solutions to exercises, and data sets to reinforce the book's main concepts.

Reinforcement Learning and Dynamic Programming Using Function Approximators

Reinforcement Learning and Dynamic Programming Using Function Approximators
Author :
Publisher : CRC Press
Total Pages : 280
Release :
ISBN-10 : 9781439821091
ISBN-13 : 1439821097
Rating : 4/5 (91 Downloads)

Book Synopsis Reinforcement Learning and Dynamic Programming Using Function Approximators by : Lucian Busoniu

Download or read book Reinforcement Learning and Dynamic Programming Using Function Approximators written by Lucian Busoniu and published by CRC Press. This book was released on 2017-07-28 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: From household appliances to applications in robotics, engineered systems involving complex dynamics can only be as effective as the algorithms that control them. While Dynamic Programming (DP) has provided researchers with a way to optimally solve decision and control problems involving complex dynamic systems, its practical value was limited by algorithms that lacked the capacity to scale up to realistic problems. However, in recent years, dramatic developments in Reinforcement Learning (RL), the model-free counterpart of DP, changed our understanding of what is possible. Those developments led to the creation of reliable methods that can be applied even when a mathematical model of the system is unavailable, allowing researchers to solve challenging control problems in engineering, as well as in a variety of other disciplines, including economics, medicine, and artificial intelligence. Reinforcement Learning and Dynamic Programming Using Function Approximators provides a comprehensive and unparalleled exploration of the field of RL and DP. With a focus on continuous-variable problems, this seminal text details essential developments that have substantially altered the field over the past decade. In its pages, pioneering experts provide a concise introduction to classical RL and DP, followed by an extensive presentation of the state-of-the-art and novel methods in RL and DP with approximation. Combining algorithm development with theoretical guarantees, they elaborate on their work with illustrative examples and insightful comparisons. Three individual chapters are dedicated to representative algorithms from each of the major classes of techniques: value iteration, policy iteration, and policy search. The features and performance of these algorithms are highlighted in extensive experimental studies on a range of control applications. The recent development of applications involving complex systems has led to a surge of interest in RL and DP methods and the subsequent need for a quality resource on the subject. For graduate students and others new to the field, this book offers a thorough introduction to both the basics and emerging methods. And for those researchers and practitioners working in the fields of optimal and adaptive control, machine learning, artificial intelligence, and operations research, this resource offers a combination of practical algorithms, theoretical analysis, and comprehensive examples that they will be able to adapt and apply to their own work. Access the authors' website at www.dcsc.tudelft.nl/rlbook/ for additional material, including computer code used in the studies and information concerning new developments.

Adaptive Dynamic Programming: Single and Multiple Controllers

Adaptive Dynamic Programming: Single and Multiple Controllers
Author :
Publisher : Springer
Total Pages : 278
Release :
ISBN-10 : 9789811317125
ISBN-13 : 9811317127
Rating : 4/5 (25 Downloads)

Book Synopsis Adaptive Dynamic Programming: Single and Multiple Controllers by : Ruizhuo Song

Download or read book Adaptive Dynamic Programming: Single and Multiple Controllers written by Ruizhuo Song and published by Springer. This book was released on 2018-12-28 with total page 278 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a class of novel optimal control methods and games schemes based on adaptive dynamic programming techniques. For systems with one control input, the ADP-based optimal control is designed for different objectives, while for systems with multi-players, the optimal control inputs are proposed based on games. In order to verify the effectiveness of the proposed methods, the book analyzes the properties of the adaptive dynamic programming methods, including convergence of the iterative value functions and the stability of the system under the iterative control laws. Further, to substantiate the mathematical analysis, it presents various application examples, which provide reference to real-world practices.

Handbook of Learning and Approximate Dynamic Programming

Handbook of Learning and Approximate Dynamic Programming
Author :
Publisher : John Wiley & Sons
Total Pages : 670
Release :
ISBN-10 : 047166054X
ISBN-13 : 9780471660545
Rating : 4/5 (4X Downloads)

Book Synopsis Handbook of Learning and Approximate Dynamic Programming by : Jennie Si

Download or read book Handbook of Learning and Approximate Dynamic Programming written by Jennie Si and published by John Wiley & Sons. This book was released on 2004-08-02 with total page 670 pages. Available in PDF, EPUB and Kindle. Book excerpt: A complete resource to Approximate Dynamic Programming (ADP), including on-line simulation code Provides a tutorial that readers can use to start implementing the learning algorithms provided in the book Includes ideas, directions, and recent results on current research issues and addresses applications where ADP has been successfully implemented The contributors are leading researchers in the field

Optimal Adaptive Control and Differential Games by Reinforcement Learning Principles

Optimal Adaptive Control and Differential Games by Reinforcement Learning Principles
Author :
Publisher : IET
Total Pages : 305
Release :
ISBN-10 : 9781849194891
ISBN-13 : 1849194890
Rating : 4/5 (91 Downloads)

Book Synopsis Optimal Adaptive Control and Differential Games by Reinforcement Learning Principles by : Draguna L. Vrabie

Download or read book Optimal Adaptive Control and Differential Games by Reinforcement Learning Principles written by Draguna L. Vrabie and published by IET. This book was released on 2013 with total page 305 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book reviews developments in the following fields: optimal adaptive control; online differential games; reinforcement learning principles; and dynamic feedback control systems.

Optimal Learning

Optimal Learning
Author :
Publisher : John Wiley & Sons
Total Pages : 416
Release :
ISBN-10 : 9781118309841
ISBN-13 : 1118309847
Rating : 4/5 (41 Downloads)

Book Synopsis Optimal Learning by : Warren B. Powell

Download or read book Optimal Learning written by Warren B. Powell and published by John Wiley & Sons. This book was released on 2013-07-09 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn the science of collecting information to make effective decisions Everyday decisions are made without the benefit of accurate information. Optimal Learning develops the needed principles for gathering information to make decisions, especially when collecting information is time-consuming and expensive. Designed for readers with an elementary background in probability and statistics, the book presents effective and practical policies illustrated in a wide range of applications, from energy, homeland security, and transportation to engineering, health, and business. This book covers the fundamental dimensions of a learning problem and presents a simple method for testing and comparing policies for learning. Special attention is given to the knowledge gradient policy and its use with a wide range of belief models, including lookup table and parametric and for online and offline problems. Three sections develop ideas with increasing levels of sophistication: Fundamentals explores fundamental topics, including adaptive learning, ranking and selection, the knowledge gradient, and bandit problems Extensions and Applications features coverage of linear belief models, subset selection models, scalar function optimization, optimal bidding, and stopping problems Advanced Topics explores complex methods including simulation optimization, active learning in mathematical programming, and optimal continuous measurements Each chapter identifies a specific learning problem, presents the related, practical algorithms for implementation, and concludes with numerous exercises. A related website features additional applications and downloadable software, including MATLAB and the Optimal Learning Calculator, a spreadsheet-based package that provides an introduction to learning and a variety of policies for learning.