Recurrence in Topological Dynamics

Recurrence in Topological Dynamics
Author :
Publisher : Springer Science & Business Media
Total Pages : 292
Release :
ISBN-10 : 0306455501
ISBN-13 : 9780306455506
Rating : 4/5 (01 Downloads)

Book Synopsis Recurrence in Topological Dynamics by : Ethan Akin

Download or read book Recurrence in Topological Dynamics written by Ethan Akin and published by Springer Science & Business Media. This book was released on 1997-07-31 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: This groundbreaking volume is the first to elaborate the theory of set families as a tool for studying the phenomenon of recurrence. The theory is implicit in such seminal works as Hillel Furstenberg's Recurrence in Ergodic Theory and Combinational Number Theory, but Ethan Akin's study elaborates it in detail, defining such elements of theory as: open families of special subsets the unification of several ideas associated with transitivity, ergodicity, and mixing the Ellis theory of enveloping semigroups for compact dynamical systems and new notions of equicontinuity, distality, and rigidity.

Recurrence in Topological Dynamics

Recurrence in Topological Dynamics
Author :
Publisher : Springer Science & Business Media
Total Pages : 271
Release :
ISBN-10 : 9781475726688
ISBN-13 : 1475726686
Rating : 4/5 (88 Downloads)

Book Synopsis Recurrence in Topological Dynamics by : Ethan Akin

Download or read book Recurrence in Topological Dynamics written by Ethan Akin and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 271 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the long run of a dynamical system, after transient phenomena have passed away, what remains is recurrence. An orbit is recurrent when it returns repeatedly to each neighborhood of its initial position. We can sharpen the concept by insisting that the returns occur with at least some prescribed frequency. For example, an orbit lies in some minimal subset if and only if it returns almost periodically to each neighborhood of the initial point. That is, each return time set is a so-called syndetic subset ofT= the positive reals (continuous time system) or T = the positive integers (discrete time system). This is a prototype for many of the results in this book. In particular, frequency is measured by membership in a family of subsets of the space modeling time, in this case the family of syndetic subsets of T. In applying dynamics to combinatorial number theory, Furstenberg introduced a large number of such families. Our first task is to describe explicitly the calculus of families implicit in Furstenberg's original work and in the results which have proliferated since. There are general constructions on families, e. g. , the dual of a family and the product of families. Other natural constructions arise from a topology or group action on the underlying set. The foundations are laid, in perhaps tedious detail, in Chapter 2. The family machinery is then applied in Chapters 3 and 4 to describe family versions of recurrence, topological transitivity, distality and rigidity.

Recurrence in Ergodic Theory and Combinatorial Number Theory

Recurrence in Ergodic Theory and Combinatorial Number Theory
Author :
Publisher : Princeton University Press
Total Pages : 216
Release :
ISBN-10 : 9781400855162
ISBN-13 : 1400855160
Rating : 4/5 (62 Downloads)

Book Synopsis Recurrence in Ergodic Theory and Combinatorial Number Theory by : Harry Furstenberg

Download or read book Recurrence in Ergodic Theory and Combinatorial Number Theory written by Harry Furstenberg and published by Princeton University Press. This book was released on 2014-07-14 with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt: Topological dynamics and ergodic theory usually have been treated independently. H. Furstenberg, instead, develops the common ground between them by applying the modern theory of dynamical systems to combinatories and number theory. Originally published in 1981. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.

Topological Dynamics

Topological Dynamics
Author :
Publisher : American Mathematical Soc.
Total Pages : 184
Release :
ISBN-10 : 0821874691
ISBN-13 : 9780821874691
Rating : 4/5 (91 Downloads)

Book Synopsis Topological Dynamics by : Walter Helbig Gottschalk

Download or read book Topological Dynamics written by Walter Helbig Gottschalk and published by American Mathematical Soc.. This book was released on 1955-01-01 with total page 184 pages. Available in PDF, EPUB and Kindle. Book excerpt: Topological dynamics is the study of transformation groups with respect to those topological properties whose prototype occurred in classical dynamics. In this volume, Part One contains the general theory. Part Two contains notable examples of flows which have contributed to the general theory of topological dynamics and which have in turn have been illuminated by the general theory of topological dynamics.

Topological Dynamical Systems

Topological Dynamical Systems
Author :
Publisher : Walter de Gruyter
Total Pages : 516
Release :
ISBN-10 : 9783110342406
ISBN-13 : 3110342405
Rating : 4/5 (06 Downloads)

Book Synopsis Topological Dynamical Systems by : Jan Vries

Download or read book Topological Dynamical Systems written by Jan Vries and published by Walter de Gruyter. This book was released on 2014-01-31 with total page 516 pages. Available in PDF, EPUB and Kindle. Book excerpt: There is no recent elementary introduction to the theory of discrete dynamical systems that stresses the topological background of the topic. This book fills this gap: it deals with this theory as 'applied general topology'. We treat all important concepts needed to understand recent literature. The book is addressed primarily to graduate students. The prerequisites for understanding this book are modest: a certain mathematical maturity and course in General Topology are sufficient.

The General Topology of Dynamical Systems

The General Topology of Dynamical Systems
Author :
Publisher : American Mathematical Soc.
Total Pages : 273
Release :
ISBN-10 : 9780821849323
ISBN-13 : 0821849328
Rating : 4/5 (23 Downloads)

Book Synopsis The General Topology of Dynamical Systems by : Ethan Akin

Download or read book The General Topology of Dynamical Systems written by Ethan Akin and published by American Mathematical Soc.. This book was released on 1993 with total page 273 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent work in dynamical systems theory has both highlighted certain topics in the pre-existing subject of topological dynamics (such as the construction of Lyapunov functions and various notions of stability) and also generated new concepts and results. This book collects these results, both old and new, and organises them into a natural foundation for all aspects of dynamical systems theory.

Topological and Symbolic Dynamics

Topological and Symbolic Dynamics
Author :
Publisher : Société Mathématique de France
Total Pages : 336
Release :
ISBN-10 : STANFORD:36105113613520
ISBN-13 :
Rating : 4/5 (20 Downloads)

Book Synopsis Topological and Symbolic Dynamics by : Petr Kůrka

Download or read book Topological and Symbolic Dynamics written by Petr Kůrka and published by Société Mathématique de France. This book was released on 2003 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: A dynamical system is a continuous self-map of a compact metric space. Topological dynamics studies the iterations of such a map, or equivalently, the trajectories of points of the state space. The basic concepts of topological dynamics are minimality, transitivity, recurrence, shadowing property, stability, equicontinuity, sensitivity, attractors, and topological entropy. Symbolic dynamics studies dynamical systems whose state spaces are zero-dimensional and consist of sequences of symbols. The main classes of symbolic dynamical systems are adding machines, subshifts of finite type, sofic subshifts, Sturmian, substitutive and Toeplitz subshifts, and cellular automata.