R for Health Data Science

R for Health Data Science
Author :
Publisher : CRC Press
Total Pages : 354
Release :
ISBN-10 : 9781000226164
ISBN-13 : 1000226166
Rating : 4/5 (64 Downloads)

Book Synopsis R for Health Data Science by : Ewen Harrison

Download or read book R for Health Data Science written by Ewen Harrison and published by CRC Press. This book was released on 2020-12-31 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this age of information, the manipulation, analysis, and interpretation of data have become a fundamental part of professional life; nowhere more so than in the delivery of healthcare. From the understanding of disease and the development of new treatments, to the diagnosis and management of individual patients, the use of data and technology is now an integral part of the business of healthcare. Those working in healthcare interact daily with data, often without realising it. The conversion of this avalanche of information to useful knowledge is essential for high-quality patient care. R for Health Data Science includes everything a healthcare professional needs to go from R novice to R guru. By the end of this book, you will be taking a sophisticated approach to health data science with beautiful visualisations, elegant tables, and nuanced analyses. Features Provides an introduction to the fundamentals of R for healthcare professionals Highlights the most popular statistical approaches to health data science Written to be as accessible as possible with minimal mathematics Emphasises the importance of truly understanding the underlying data through the use of plots Includes numerous examples that can be adapted for your own data Helps you create publishable documents and collaborate across teams With this book, you are in safe hands – Prof. Harrison is a clinician and Dr. Pius is a data scientist, bringing 25 years’ combined experience of using R at the coal face. This content has been taught to hundreds of individuals from a variety of backgrounds, from rank beginners to experts moving to R from other platforms.

Data Science and Predictive Analytics

Data Science and Predictive Analytics
Author :
Publisher : Springer Nature
Total Pages : 940
Release :
ISBN-10 : 9783031174834
ISBN-13 : 3031174836
Rating : 4/5 (34 Downloads)

Book Synopsis Data Science and Predictive Analytics by : Ivo D. Dinov

Download or read book Data Science and Predictive Analytics written by Ivo D. Dinov and published by Springer Nature. This book was released on 2023-02-16 with total page 940 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook integrates important mathematical foundations, efficient computational algorithms, applied statistical inference techniques, and cutting-edge machine learning approaches to address a wide range of crucial biomedical informatics, health analytics applications, and decision science challenges. Each concept in the book includes a rigorous symbolic formulation coupled with computational algorithms and complete end-to-end pipeline protocols implemented as functional R electronic markdown notebooks. These workflows support active learning and demonstrate comprehensive data manipulations, interactive visualizations, and sophisticated analytics. The content includes open problems, state-of-the-art scientific knowledge, ethical integration of heterogeneous scientific tools, and procedures for systematic validation and dissemination of reproducible research findings. Complementary to the enormous challenges related to handling, interrogating, and understanding massive amounts of complex structured and unstructured data, there are unique opportunities that come with access to a wealth of feature-rich, high-dimensional, and time-varying information. The topics covered in Data Science and Predictive Analytics address specific knowledge gaps, resolve educational barriers, and mitigate workforce information-readiness and data science deficiencies. Specifically, it provides a transdisciplinary curriculum integrating core mathematical principles, modern computational methods, advanced data science techniques, model-based machine learning, model-free artificial intelligence, and innovative biomedical applications. The book’s fourteen chapters start with an introduction and progressively build foundational skills from visualization to linear modeling, dimensionality reduction, supervised classification, black-box machine learning techniques, qualitative learning methods, unsupervised clustering, model performance assessment, feature selection strategies, longitudinal data analytics, optimization, neural networks, and deep learning. The second edition of the book includes additional learning-based strategies utilizing generative adversarial networks, transfer learning, and synthetic data generation, as well as eight complementary electronic appendices. This textbook is suitable for formal didactic instructor-guided course education, as well as for individual or team-supported self-learning. The material is presented at the upper-division and graduate-level college courses and covers applied and interdisciplinary mathematics, contemporary learning-based data science techniques, computational algorithm development, optimization theory, statistical computing, and biomedical sciences. The analytical techniques and predictive scientific methods described in the book may be useful to a wide range of readers, formal and informal learners, college instructors, researchers, and engineers throughout the academy, industry, government, regulatory, funding, and policy agencies. The supporting book website provides many examples, datasets, functional scripts, complete electronic notebooks, extensive appendices, and additional materials.

Statistics for Health Data Science

Statistics for Health Data Science
Author :
Publisher : Springer Nature
Total Pages : 238
Release :
ISBN-10 : 9783030598891
ISBN-13 : 3030598896
Rating : 4/5 (91 Downloads)

Book Synopsis Statistics for Health Data Science by : Ruth Etzioni

Download or read book Statistics for Health Data Science written by Ruth Etzioni and published by Springer Nature. This book was released on 2021-01-04 with total page 238 pages. Available in PDF, EPUB and Kindle. Book excerpt: Students and researchers in the health sciences are faced with greater opportunity and challenge than ever before. The opportunity stems from the explosion in publicly available data that simultaneously informs and inspires new avenues of investigation. The challenge is that the analytic tools required go far beyond the standard methods and models of basic statistics. This textbook aims to equip health care researchers with the most important elements of a modern health analytics toolkit, drawing from the fields of statistics, health econometrics, and data science. This textbook is designed to overcome students’ anxiety about data and statistics and to help them to become confident users of appropriate analytic methods for health care research studies. Methods are presented organically, with new material building naturally on what has come before. Each technique is motivated by a topical research question, explained in non-technical terms, and accompanied by engaging explanations and examples. In this way, the authors cultivate a deep (“organic”) understanding of a range of analytic techniques, their assumptions and data requirements, and their advantages and limitations. They illustrate all lessons via analyses of real data from a variety of publicly available databases, addressing relevant research questions and comparing findings to those of published studies. Ultimately, this textbook is designed to cultivate health services researchers that are thoughtful and well informed about health data science, rather than data analysts. This textbook differs from the competition in its unique blend of methods and its determination to ensure that readers gain an understanding of how, when, and why to apply them. It provides the public health researcher with a way to think analytically about scientific questions, and it offers well-founded guidance for pairing data with methods for valid analysis. Readers should feel emboldened to tackle analysis of real public datasets using traditional statistical models, health econometrics methods, and even predictive algorithms. Accompanying code and data sets are provided in an author site: https://roman-gulati.github.io/statistics-for-health-data-science/

Data Science with R for Psychologists and Healthcare Professionals

Data Science with R for Psychologists and Healthcare Professionals
Author :
Publisher : CRC Press
Total Pages : 312
Release :
ISBN-10 : 9781000530568
ISBN-13 : 1000530566
Rating : 4/5 (68 Downloads)

Book Synopsis Data Science with R for Psychologists and Healthcare Professionals by : Christian Ryan

Download or read book Data Science with R for Psychologists and Healthcare Professionals written by Christian Ryan and published by CRC Press. This book was released on 2021-12-23 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: This introduction to R for students of psychology and health sciences aims to fast-track the reader through some of the most difficult aspects of learning to do data analysis and statistics. It demonstrates the benefits for reproducibility and reliability of using a programming language over commercial software packages such as SPSS. The early chapters build at a gentle pace, to give the reader confidence in moving from a point-and-click software environment, to the more robust and reliable world of statistical coding. This is a thoroughly modern and up-to-date approach using RStudio and the tidyverse. A range of R packages relevant to psychological research are discussed in detail. A great deal of research in the health sciences concerns questionnaire data, which may require recoding, aggregation and transformation before quantitative techniques and statistical analysis can be applied. R offers many useful and transparent functions to process data and check psychometric properties. These are illustrated in detail, along with a wide range of tools R affords for data visualisation. Many introductory statistics books for the health sciences rely on toy examples - in contrast, this book benefits from utilising open datasets from published psychological studies, to both motivate and demonstrate the transition from data manipulation and analysis to published report. R Markdown is becoming the preferred method for communicating in the open science community. This book also covers the detail of how to integrate the use of R Markdown documents into the research workflow and how to use these in preparing manuscripts for publication, adhering to the latest APA style guidelines.

Geospatial Health Data

Geospatial Health Data
Author :
Publisher : CRC Press
Total Pages : 216
Release :
ISBN-10 : 9781000732153
ISBN-13 : 1000732150
Rating : 4/5 (53 Downloads)

Book Synopsis Geospatial Health Data by : Paula Moraga

Download or read book Geospatial Health Data written by Paula Moraga and published by CRC Press. This book was released on 2019-11-26 with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt: Geospatial health data are essential to inform public health and policy. These data can be used to quantify disease burden, understand geographic and temporal patterns, identify risk factors, and measure inequalities. Geospatial Health Data: Modeling and Visualization with R-INLA and Shiny describes spatial and spatio-temporal statistical methods and visualization techniques to analyze georeferenced health data in R. The book covers the following topics: Manipulate and transform point, areal, and raster data, Bayesian hierarchical models for disease mapping using areal and geostatistical data, Fit and interpret spatial and spatio-temporal models with the Integrated Nested Laplace Approximations (INLA) and the Stochastic Partial Differential Equation (SPDE) approaches, Create interactive and static visualizations such as disease maps and time plots, Reproducible R Markdown reports, interactive dashboards, and Shiny web applications that facilitate the communication of insights to collaborators and policy makers. The book features fully reproducible examples of several disease and environmental applications using real-world data such as malaria in The Gambia, cancer in Scotland and USA, and air pollution in Spain. Examples in the book focus on health applications, but the approaches covered are also applicable to other fields that use georeferenced data including epidemiology, ecology, demography or criminology. The book provides clear descriptions of the R code for data importing, manipulation, modeling and visualization, as well as the interpretation of the results. This ensures contents are fully reproducible and accessible for students, researchers and practitioners.

R for Data Science

R for Data Science
Author :
Publisher : "O'Reilly Media, Inc."
Total Pages : 521
Release :
ISBN-10 : 9781491910368
ISBN-13 : 1491910364
Rating : 4/5 (68 Downloads)

Book Synopsis R for Data Science by : Hadley Wickham

Download or read book R for Data Science written by Hadley Wickham and published by "O'Reilly Media, Inc.". This book was released on 2016-12-12 with total page 521 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn how to use R to turn raw data into insight, knowledge, and understanding. This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You'll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you've learned along the way. You'll learn how to: Wrangle—transform your datasets into a form convenient for analysis Program—learn powerful R tools for solving data problems with greater clarity and ease Explore—examine your data, generate hypotheses, and quickly test them Model—provide a low-dimensional summary that captures true "signals" in your dataset Communicate—learn R Markdown for integrating prose, code, and results

R for Data Science

R for Data Science
Author :
Publisher : Packt Publishing Ltd
Total Pages : 577
Release :
ISBN-10 : 9781784392659
ISBN-13 : 1784392650
Rating : 4/5 (59 Downloads)

Book Synopsis R for Data Science by : Dan Toomey

Download or read book R for Data Science written by Dan Toomey and published by Packt Publishing Ltd. This book was released on 2014-12-24 with total page 577 pages. Available in PDF, EPUB and Kindle. Book excerpt: If you are a data analyst who has a firm grip on some advanced data analysis techniques and wants to learn how to leverage the features of R, this is the book for you. You should have some basic knowledge of the R language and should know about some data science topics.