Parametric Geometry of Curves and Surfaces

Parametric Geometry of Curves and Surfaces
Author :
Publisher : Springer Nature
Total Pages : 293
Release :
ISBN-10 : 9783030813178
ISBN-13 : 3030813177
Rating : 4/5 (78 Downloads)

Book Synopsis Parametric Geometry of Curves and Surfaces by : Alberto Lastra

Download or read book Parametric Geometry of Curves and Surfaces written by Alberto Lastra and published by Springer Nature. This book was released on 2021-09-06 with total page 293 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook provides a thorough introduction to the differential geometry of parametrized curves and surfaces, along with a wealth of applications to specific architectural elements. Geometric elements in architecture respond to practical, physical and aesthetic needs. Proper understanding of the mathematics underlying the geometry provides control over the construction. This book relates the classical mathematical theory of parametrized curves and surfaces to multiple applications in architecture. The presentation is mathematically complete with numerous figures and animations illustrating the theory, and special attention is given to some of the recent trends in the field. Solved exercises are provided to see the theory in practice. Intended as a textbook for lecture courses, Parametric Geometry of Curves and Surfaces is suitable for mathematically-inclined students in engineering, architecture and related fields, and can also serve as a textbook for traditional differential geometry courses to mathematics students. Researchers interested in the mathematics of architecture or computer-aided design will also value its combination of precise mathematics and architectural examples.

Geometry of Curves

Geometry of Curves
Author :
Publisher : CRC Press
Total Pages : 384
Release :
ISBN-10 : 1584881666
ISBN-13 : 9781584881667
Rating : 4/5 (66 Downloads)

Book Synopsis Geometry of Curves by : J.W. Rutter

Download or read book Geometry of Curves written by J.W. Rutter and published by CRC Press. This book was released on 2000-02-23 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: Interest in the study of geometry is currently enjoying a resurgence-understandably so, as the study of curves was once the playground of some very great mathematicians. However, many of the subject's more exciting aspects require a somewhat advanced mathematics background. For the "fun stuff" to be accessible, we need to offer students an introduction with modest prerequisites, one that stimulates their interest and focuses on problem solving. Integrating parametric, algebraic, and projective curves into a single text, Geometry of Curves offers students a unique approach that provides a mathematical structure for solving problems, not just a catalog of theorems. The author begins with the basics, then takes students on a fascinating journey from conics, higher algebraic and transcendental curves, through the properties of parametric curves, the classification of limaçons, envelopes, and finally to projective curves, their relationship to algebraic curves, and their application to asymptotes and boundedness. The uniqueness of this treatment lies in its integration of the different types of curves, its use of analytic methods, and its generous number of examples, exercises, and illustrations. The result is a practical text, almost entirely self-contained, that not only imparts a deeper understanding of the theory, but inspires a heightened appreciation of geometry and interest in more advanced studies.

Curves and Surfaces

Curves and Surfaces
Author :
Publisher : Springer Science & Business Media
Total Pages : 407
Release :
ISBN-10 : 9788847019416
ISBN-13 : 8847019419
Rating : 4/5 (16 Downloads)

Book Synopsis Curves and Surfaces by : M. Abate

Download or read book Curves and Surfaces written by M. Abate and published by Springer Science & Business Media. This book was released on 2012-06-11 with total page 407 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book provides an introduction to Differential Geometry of Curves and Surfaces. The theory of curves starts with a discussion of possible definitions of the concept of curve, proving in particular the classification of 1-dimensional manifolds. We then present the classical local theory of parametrized plane and space curves (curves in n-dimensional space are discussed in the complementary material): curvature, torsion, Frenet’s formulas and the fundamental theorem of the local theory of curves. Then, after a self-contained presentation of degree theory for continuous self-maps of the circumference, we study the global theory of plane curves, introducing winding and rotation numbers, and proving the Jordan curve theorem for curves of class C2, and Hopf theorem on the rotation number of closed simple curves. The local theory of surfaces begins with a comparison of the concept of parametrized (i.e., immersed) surface with the concept of regular (i.e., embedded) surface. We then develop the basic differential geometry of surfaces in R3: definitions, examples, differentiable maps and functions, tangent vectors (presented both as vectors tangent to curves in the surface and as derivations on germs of differentiable functions; we shall consistently use both approaches in the whole book) and orientation. Next we study the several notions of curvature on a surface, stressing both the geometrical meaning of the objects introduced and the algebraic/analytical methods needed to study them via the Gauss map, up to the proof of Gauss’ Teorema Egregium. Then we introduce vector fields on a surface (flow, first integrals, integral curves) and geodesics (definition, basic properties, geodesic curvature, and, in the complementary material, a full proof of minimizing properties of geodesics and of the Hopf-Rinow theorem for surfaces). Then we shall present a proof of the celebrated Gauss-Bonnet theorem, both in its local and in its global form, using basic properties (fully proved in the complementary material) of triangulations of surfaces. As an application, we shall prove the Poincaré-Hopf theorem on zeroes of vector fields. Finally, the last chapter will be devoted to several important results on the global theory of surfaces, like for instance the characterization of surfaces with constant Gaussian curvature, and the orientability of compact surfaces in R3.

Differential Geometry of Curves and Surfaces

Differential Geometry of Curves and Surfaces
Author :
Publisher : Springer Science & Business Media
Total Pages : 215
Release :
ISBN-10 : 9780817644024
ISBN-13 : 0817644024
Rating : 4/5 (24 Downloads)

Book Synopsis Differential Geometry of Curves and Surfaces by : Victor Andreevich Toponogov

Download or read book Differential Geometry of Curves and Surfaces written by Victor Andreevich Toponogov and published by Springer Science & Business Media. This book was released on 2006-09-10 with total page 215 pages. Available in PDF, EPUB and Kindle. Book excerpt: Central topics covered include curves, surfaces, geodesics, intrinsic geometry, and the Alexandrov global angle comparision theorem Many nontrivial and original problems (some with hints and solutions) Standard theoretical material is combined with more difficult theorems and complex problems, while maintaining a clear distinction between the two levels

Differential Geometry of Curves and Surfaces

Differential Geometry of Curves and Surfaces
Author :
Publisher : CRC Press
Total Pages : 345
Release :
ISBN-10 : 9781439894057
ISBN-13 : 1439894051
Rating : 4/5 (57 Downloads)

Book Synopsis Differential Geometry of Curves and Surfaces by : Thomas F. Banchoff

Download or read book Differential Geometry of Curves and Surfaces written by Thomas F. Banchoff and published by CRC Press. This book was released on 2010-03-01 with total page 345 pages. Available in PDF, EPUB and Kindle. Book excerpt: Students and professors of an undergraduate course in differential geometry will appreciate the clear exposition and comprehensive exercises in this book that focuses on the geometric properties of curves and surfaces, one- and two-dimensional objects in Euclidean space. The problems generally relate to questions of local properties (the properties

Shape Interrogation for Computer Aided Design and Manufacturing

Shape Interrogation for Computer Aided Design and Manufacturing
Author :
Publisher : Springer Science & Business Media
Total Pages : 428
Release :
ISBN-10 : 3540424547
ISBN-13 : 9783540424543
Rating : 4/5 (47 Downloads)

Book Synopsis Shape Interrogation for Computer Aided Design and Manufacturing by : Nicholas M. Patrikalakis

Download or read book Shape Interrogation for Computer Aided Design and Manufacturing written by Nicholas M. Patrikalakis and published by Springer Science & Business Media. This book was released on 2002-02-14 with total page 428 pages. Available in PDF, EPUB and Kindle. Book excerpt: Shape interrogation is the process of extraction of information from a geometric model. It is a fundamental component of Computer Aided Design and Manufacturing (CAD/CAM) systems. The authors focus on shape interrogation of geometric models bounded by free-form surfaces. Free-form surfaces, also called sculptured surfaces, are widely used in the bodies of ships, automobiles and aircraft, which have both functionality and attractive shape requirements. Many electronic devices as well as consumer products are designed with aesthetic shapes, which involve free-form surfaces. This book provides the mathematical fundamentals as well as algorithms for various shape interrogation methods including nonlinear polynomial solvers, intersection problems, differential geometry of intersection curves, distance functions, curve and surface interrogation, umbilics and lines of curvature, geodesics, and offset curves and surfaces. This book will be of interest both to graduate students and professionals.

Modeling of Curves and Surfaces in CAD/CAM

Modeling of Curves and Surfaces in CAD/CAM
Author :
Publisher : Springer Science & Business Media
Total Pages : 364
Release :
ISBN-10 : 9783642765988
ISBN-13 : 364276598X
Rating : 4/5 (88 Downloads)

Book Synopsis Modeling of Curves and Surfaces in CAD/CAM by : Mamoru Hosaka

Download or read book Modeling of Curves and Surfaces in CAD/CAM written by Mamoru Hosaka and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 364 pages. Available in PDF, EPUB and Kindle. Book excerpt: 1 Aims and Features of This Book The contents of t. his book were originally planned t. o be included in a book en titled Geometric lIIodeling and CAD/CAM to be written by M. Hosaka and F. Kimura, but since the draft. of my part of the book was finished much earlier than Kimura's, we decided to publish this part separately at first. In it, geometrically oriented basic methods and tools used for analysis and synthesis of curves and surfaces used in CAD/CAM, various expressions and manipulations of free-form surface patches and their connection, interference as well as their qualit. y eval uation are treated. They are important elements and procedures of geometric models. And construction and utilization of geometric models which include free-form surfaces are explained in the application examples, in which the meth ods and the techniques described in this book were used. In the succeeding book which Kimura is to write, advanced topics such as data structures of geometric models, non-manifold models, geometric inference as well as tolerance problems and product models, process planning and so on are to be included. Conse quently, the title of this book is changed to Modeling of Curves and Surfaces in CAD/CAM. Features of this book are the following. Though there are excellent text books in the same field such as G. Farin's Curves and Surfaces for CAD /CAM[l] and C. M.