p-Adic Lie Groups

p-Adic Lie Groups
Author :
Publisher : Springer Science & Business Media
Total Pages : 259
Release :
ISBN-10 : 9783642211478
ISBN-13 : 364221147X
Rating : 4/5 (78 Downloads)

Book Synopsis p-Adic Lie Groups by : Peter Schneider

Download or read book p-Adic Lie Groups written by Peter Schneider and published by Springer Science & Business Media. This book was released on 2011-06-11 with total page 259 pages. Available in PDF, EPUB and Kindle. Book excerpt: Manifolds over complete nonarchimedean fields together with notions like tangent spaces and vector fields form a convenient geometric language to express the basic formalism of p-adic analysis. The volume starts with a self-contained and detailed introduction to this language. This includes the discussion of spaces of locally analytic functions as topological vector spaces, important for applications in representation theory. The author then sets up the analytic foundations of the theory of p-adic Lie groups and develops the relation between p-adic Lie groups and their Lie algebras. The second part of the book contains, for the first time in a textbook, a detailed exposition of Lazard's algebraic approach to compact p-adic Lie groups, via his notion of a p-valuation, together with its application to the structure of completed group rings.

p-Adic Lie Groups

p-Adic Lie Groups
Author :
Publisher : Springer
Total Pages : 256
Release :
ISBN-10 : 3642268668
ISBN-13 : 9783642268663
Rating : 4/5 (68 Downloads)

Book Synopsis p-Adic Lie Groups by : Peter Schneider

Download or read book p-Adic Lie Groups written by Peter Schneider and published by Springer. This book was released on 2013-08-03 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: Manifolds over complete nonarchimedean fields together with notions like tangent spaces and vector fields form a convenient geometric language to express the basic formalism of p-adic analysis. The volume starts with a self-contained and detailed introduction to this language. This includes the discussion of spaces of locally analytic functions as topological vector spaces, important for applications in representation theory. The author then sets up the analytic foundations of the theory of p-adic Lie groups and develops the relation between p-adic Lie groups and their Lie algebras. The second part of the book contains, for the first time in a textbook, a detailed exposition of Lazard's algebraic approach to compact p-adic Lie groups, via his notion of a p-valuation, together with its application to the structure of completed group rings.

Representations of Real and P-adic Groups

Representations of Real and P-adic Groups
Author :
Publisher : World Scientific
Total Pages : 426
Release :
ISBN-10 : 9789812387790
ISBN-13 : 981238779X
Rating : 4/5 (90 Downloads)

Book Synopsis Representations of Real and P-adic Groups by : Eng-chye Tan

Download or read book Representations of Real and P-adic Groups written by Eng-chye Tan and published by World Scientific. This book was released on 2004 with total page 426 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Institute for Mathematical Sciences at the National University of Singapore hosted a research program on ?Representation Theory of Lie Groups? from July 2002 to January 2003. As part of the program, tutorials for graduate students and junior researchers were given by leading experts in the field.This invaluable volume collects the expanded lecture notes of those tutorials. The topics covered include uncertainty principles for locally compact abelian groups, fundamentals of representations of p-adic groups, the Harish-Chandra-Howe local character expansion, classification of the square-integrable representations modulo cuspidal data, Dirac cohomology and Vogan's conjecture, multiplicity-free actions and Schur-Weyl-Howe duality.The lecturers include Tomasz Przebinda from the University of Oklahoma, USA; Gordan Savin from the University of Utah, USA; Stephen DeBacker from Harvard University, USA; Marko Tadi? from the University of Zagreb, Croatia; Jing-Song Huang from The Hong Kong University of Science and Technology, Hong Kong; Pavle Pand?i? from the University of Zagreb, Croatia; Chal Benson and Gail Ratcliff from East Carolina University, USA; and Roe Goodman from Rutgers University, USA.

Analytic Pro-P Groups

Analytic Pro-P Groups
Author :
Publisher : Cambridge University Press
Total Pages : 392
Release :
ISBN-10 : 0521542189
ISBN-13 : 9780521542180
Rating : 4/5 (89 Downloads)

Book Synopsis Analytic Pro-P Groups by : J. D. Dixon

Download or read book Analytic Pro-P Groups written by J. D. Dixon and published by Cambridge University Press. This book was released on 2003-09-18 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: An up-to-date treatment of analytic pro-p groups for graduate students and researchers.

Abelian l-Adic Representations and Elliptic Curves

Abelian l-Adic Representations and Elliptic Curves
Author :
Publisher : CRC Press
Total Pages : 203
Release :
ISBN-10 : 9781439863862
ISBN-13 : 1439863865
Rating : 4/5 (62 Downloads)

Book Synopsis Abelian l-Adic Representations and Elliptic Curves by : Jean-Pierre Serre

Download or read book Abelian l-Adic Representations and Elliptic Curves written by Jean-Pierre Serre and published by CRC Press. This book was released on 1997-11-15 with total page 203 pages. Available in PDF, EPUB and Kindle. Book excerpt: This classic book contains an introduction to systems of l-adic representations, a topic of great importance in number theory and algebraic geometry, as reflected by the spectacular recent developments on the Taniyama-Weil conjecture and Fermat's Last Theorem. The initial chapters are devoted to the Abelian case (complex multiplication), where one

Lie Algebras and Lie Groups

Lie Algebras and Lie Groups
Author :
Publisher : Springer
Total Pages : 180
Release :
ISBN-10 : 9783540706342
ISBN-13 : 3540706348
Rating : 4/5 (42 Downloads)

Book Synopsis Lie Algebras and Lie Groups by : Jean-Pierre Serre

Download or read book Lie Algebras and Lie Groups written by Jean-Pierre Serre and published by Springer. This book was released on 2009-02-07 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main general theorems on Lie Algebras are covered, roughly the content of Bourbaki's Chapter I.I have added some results on free Lie algebras, which are useful, both for Lie's theory itself (Campbell-Hausdorff formula) and for applications to pro-Jrgroups. of time prevented me from including the more precise theory of Lack semisimple Lie algebras (roots, weights, etc.); but, at least, I have given, as a last Chapter, the typical case ofal, . This part has been written with the help of F. Raggi and J. Tate. I want to thank them, and also Sue Golan, who did the typing for both parts. Jean-Pierre Serre Harvard, Fall 1964 Chapter I. Lie Algebras: Definition and Examples Let Ie be a commutativering with unit element, and let A be a k-module, then A is said to be a Ie-algebra if there is given a k-bilinear map A x A~ A (i.e., a k-homomorphism A0" A -+ A). As usual we may define left, right and two-sided ideals and therefore quo tients. Definition 1. A Lie algebra over Ie isan algebrawith the following properties: 1). The map A0i A -+ A admits a factorization A ®i A -+ A2A -+ A i.e., ifwe denote the imageof(x, y) under this map by [x, y) then the condition becomes for all x e k. [x, x)=0 2). (lx, II], z]+ny, z), x) + ([z, xl, til = 0 (Jacobi's identity) The condition 1) implies [x,1/]=-[1/, x).

Lie Groups and Lie Algebras

Lie Groups and Lie Algebras
Author :
Publisher : Springer Science & Business Media
Total Pages : 486
Release :
ISBN-10 : 3540642420
ISBN-13 : 9783540642428
Rating : 4/5 (20 Downloads)

Book Synopsis Lie Groups and Lie Algebras by : Nicolas Bourbaki

Download or read book Lie Groups and Lie Algebras written by Nicolas Bourbaki and published by Springer Science & Business Media. This book was released on 1989 with total page 486 pages. Available in PDF, EPUB and Kindle. Book excerpt: