Open Problems and Surveys of Contemporary Mathematics

Open Problems and Surveys of Contemporary Mathematics
Author :
Publisher :
Total Pages : 477
Release :
ISBN-10 : 1571462783
ISBN-13 : 9781571462787
Rating : 4/5 (83 Downloads)

Book Synopsis Open Problems and Surveys of Contemporary Mathematics by : Lizhen Ji

Download or read book Open Problems and Surveys of Contemporary Mathematics written by Lizhen Ji and published by . This book was released on 2013 with total page 477 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Surveys in Contemporary Mathematics

Surveys in Contemporary Mathematics
Author :
Publisher : Cambridge University Press
Total Pages : 370
Release :
ISBN-10 : 9780521705646
ISBN-13 : 0521705649
Rating : 4/5 (46 Downloads)

Book Synopsis Surveys in Contemporary Mathematics by : Nicholas Young

Download or read book Surveys in Contemporary Mathematics written by Nicholas Young and published by Cambridge University Press. This book was released on 2008 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: A collection of articles showcasing the achievements of young Russian researchers in combinatorial and algebraic geometry and topology.

Surveys in Modern Mathematics

Surveys in Modern Mathematics
Author :
Publisher : Cambridge University Press
Total Pages : 360
Release :
ISBN-10 : 9780521547932
ISBN-13 : 0521547938
Rating : 4/5 (32 Downloads)

Book Synopsis Surveys in Modern Mathematics by : Viktor Vasilʹevich Prasolov

Download or read book Surveys in Modern Mathematics written by Viktor Vasilʹevich Prasolov and published by Cambridge University Press. This book was released on 2005-04-14 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt: Topics covered range from computational complexity, algebraic geometry, dynamics, through to number theory and quantum groups.

Surveys in Modern Mathematics

Surveys in Modern Mathematics
Author :
Publisher : Cambridge University Press
Total Pages : 364
Release :
ISBN-10 : 1139441124
ISBN-13 : 9781139441124
Rating : 4/5 (24 Downloads)

Book Synopsis Surveys in Modern Mathematics by : Victor Prasolov

Download or read book Surveys in Modern Mathematics written by Victor Prasolov and published by Cambridge University Press. This book was released on 2005-04-14 with total page 364 pages. Available in PDF, EPUB and Kindle. Book excerpt: This collection of articles from the Independent University of Moscow is derived from the Globus seminars held there. They are given by world authorities, from Russia and elsewhere, in various areas of mathematics and are designed to introduce graduate students to some of the most dynamic areas of mathematical research. The seminars aim to be informal, wide-ranging and forward-looking, getting across the ideas and concepts rather than formal proofs, and this carries over to the articles here. Topics covered range from computational complexity, algebraic geometry, dynamics, through to number theory and quantum groups. The volume as a whole is a fascinating and exciting overview of contemporary mathematics.

Field Arithmetic

Field Arithmetic
Author :
Publisher : Springer Science & Business Media
Total Pages : 812
Release :
ISBN-10 : 354022811X
ISBN-13 : 9783540228110
Rating : 4/5 (1X Downloads)

Book Synopsis Field Arithmetic by : Michael D. Fried

Download or read book Field Arithmetic written by Michael D. Fried and published by Springer Science & Business Media. This book was released on 2005 with total page 812 pages. Available in PDF, EPUB and Kindle. Book excerpt: Field Arithmetic explores Diophantine fields through their absolute Galois groups. This largely self-contained treatment starts with techniques from algebraic geometry, number theory, and profinite groups. Graduate students can effectively learn generalizations of finite field ideas. We use Haar measure on the absolute Galois group to replace counting arguments. New Chebotarev density variants interpret diophantine properties. Here we have the only complete treatment of Galois stratifications, used by Denef and Loeser, et al, to study Chow motives of Diophantine statements. Progress from the first edition starts by characterizing the finite-field like P(seudo)A(lgebraically)C(losed) fields. We once believed PAC fields were rare. Now we know they include valuable Galois extensions of the rationals that present its absolute Galois group through known groups. PAC fields have projective absolute Galois group. Those that are Hilbertian are characterized by this group being pro-free. These last decade results are tools for studying fields by their relation to those with projective absolute group. There are still mysterious problems to guide a new generation: Is the solvable closure of the rationals PAC; and do projective Hilbertian fields have pro-free absolute Galois group (includes Shafarevich's conjecture)?

Elliptic Curves (Second Edition)

Elliptic Curves (Second Edition)
Author :
Publisher : World Scientific
Total Pages : 319
Release :
ISBN-10 : 9789811221859
ISBN-13 : 9811221855
Rating : 4/5 (59 Downloads)

Book Synopsis Elliptic Curves (Second Edition) by : James S Milne

Download or read book Elliptic Curves (Second Edition) written by James S Milne and published by World Scientific. This book was released on 2020-08-20 with total page 319 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book uses the beautiful theory of elliptic curves to introduce the reader to some of the deeper aspects of number theory. It assumes only a knowledge of the basic algebra, complex analysis, and topology usually taught in first-year graduate courses.An elliptic curve is a plane curve defined by a cubic polynomial. Although the problem of finding the rational points on an elliptic curve has fascinated mathematicians since ancient times, it was not until 1922 that Mordell proved that the points form a finitely generated group. There is still no proven algorithm for finding the rank of the group, but in one of the earliest important applications of computers to mathematics, Birch and Swinnerton-Dyer discovered a relation between the rank and the numbers of points on the curve computed modulo a prime. Chapter IV of the book proves Mordell's theorem and explains the conjecture of Birch and Swinnerton-Dyer.Every elliptic curve over the rational numbers has an L-series attached to it.Hasse conjectured that this L-series satisfies a functional equation, and in 1955 Taniyama suggested that Hasse's conjecture could be proved by showing that the L-series arises from a modular form. This was shown to be correct by Wiles (and others) in the 1990s, and, as a consequence, one obtains a proof of Fermat's Last Theorem. Chapter V of the book is devoted to explaining this work.The first three chapters develop the basic theory of elliptic curves.For this edition, the text has been completely revised and updated.

Open Problems in Mathematics

Open Problems in Mathematics
Author :
Publisher : Springer
Total Pages : 547
Release :
ISBN-10 : 9783319321622
ISBN-13 : 3319321625
Rating : 4/5 (22 Downloads)

Book Synopsis Open Problems in Mathematics by : John Forbes Nash, Jr.

Download or read book Open Problems in Mathematics written by John Forbes Nash, Jr. and published by Springer. This book was released on 2016-07-05 with total page 547 pages. Available in PDF, EPUB and Kindle. Book excerpt: The goal in putting together this unique compilation was to present the current status of the solutions to some of the most essential open problems in pure and applied mathematics. Emphasis is also given to problems in interdisciplinary research for which mathematics plays a key role. This volume comprises highly selected contributions by some of the most eminent mathematicians in the international mathematical community on longstanding problems in very active domains of mathematical research. A joint preface by the two volume editors is followed by a personal farewell to John F. Nash, Jr. written by Michael Th. Rassias. An introduction by Mikhail Gromov highlights some of Nash’s legendary mathematical achievements. The treatment in this book includes open problems in the following fields: algebraic geometry, number theory, analysis, discrete mathematics, PDEs, differential geometry, topology, K-theory, game theory, fluid mechanics, dynamical systems and ergodic theory, cryptography, theoretical computer science, and more. Extensive discussions surrounding the progress made for each problem are designed to reach a wide community of readers, from graduate students and established research mathematicians to physicists, computer scientists, economists, and research scientists who are looking to develop essential and modern new methods and theories to solve a variety of open problems.