Numerical Methods for Large Eigenvalue Problems

Numerical Methods for Large Eigenvalue Problems
Author :
Publisher : SIAM
Total Pages : 292
Release :
ISBN-10 : 1611970733
ISBN-13 : 9781611970739
Rating : 4/5 (33 Downloads)

Book Synopsis Numerical Methods for Large Eigenvalue Problems by : Yousef Saad

Download or read book Numerical Methods for Large Eigenvalue Problems written by Yousef Saad and published by SIAM. This book was released on 2011-01-01 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: This revised edition discusses numerical methods for computing eigenvalues and eigenvectors of large sparse matrices. It provides an in-depth view of the numerical methods that are applicable for solving matrix eigenvalue problems that arise in various engineering and scientific applications. Each chapter was updated by shortening or deleting outdated topics, adding topics of more recent interest, and adapting the Notes and References section. Significant changes have been made to Chapters 6 through 8, which describe algorithms and their implementations and now include topics such as the implicit restart techniques, the Jacobi-Davidson method, and automatic multilevel substructuring.

Numerical Methods for Eigenvalue Problems

Numerical Methods for Eigenvalue Problems
Author :
Publisher : Walter de Gruyter
Total Pages : 216
Release :
ISBN-10 : 9783110250374
ISBN-13 : 3110250373
Rating : 4/5 (74 Downloads)

Book Synopsis Numerical Methods for Eigenvalue Problems by : Steffen Börm

Download or read book Numerical Methods for Eigenvalue Problems written by Steffen Börm and published by Walter de Gruyter. This book was released on 2012-05-29 with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt: Eigenvalues and eigenvectors of matrices and linear operators play an important role when solving problems from structural mechanics and electrodynamics, e.g., by describing the resonance frequencies of systems, when investigating the long-term behavior of stochastic processes, e.g., by describing invariant probability measures, and as a tool for solving more general mathematical problems, e.g., by diagonalizing ordinary differential equations or systems from control theory. This textbook presents a number of the most important numerical methods for finding eigenvalues and eigenvectors of matrices. The authors discuss the central ideas underlying the different algorithms and introduce the theoretical concepts required to analyze their behavior with the goal to present an easily accessible introduction to the field, including rigorous proofs of all important results, but not a complete overview of the vast body of research. Several programming examples allow the reader to experience the behavior of the different algorithms first-hand. The book addresses students and lecturers of mathematics, physics and engineering who are interested in the fundamental ideas of modern numerical methods and want to learn how to apply and extend these ideas to solve new problems.

Numerical Methods for General and Structured Eigenvalue Problems

Numerical Methods for General and Structured Eigenvalue Problems
Author :
Publisher : Springer Science & Business Media
Total Pages : 272
Release :
ISBN-10 : 9783540285021
ISBN-13 : 3540285024
Rating : 4/5 (21 Downloads)

Book Synopsis Numerical Methods for General and Structured Eigenvalue Problems by : Daniel Kressner

Download or read book Numerical Methods for General and Structured Eigenvalue Problems written by Daniel Kressner and published by Springer Science & Business Media. This book was released on 2006-01-20 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is about computing eigenvalues, eigenvectors, and invariant subspaces of matrices. Treatment includes generalized and structured eigenvalue problems and all vital aspects of eigenvalue computations. A unique feature is the detailed treatment of structured eigenvalue problems, providing insight on accuracy and efficiency gains to be expected from algorithms that take the structure of a matrix into account.

Finite Element Methods for Eigenvalue Problems

Finite Element Methods for Eigenvalue Problems
Author :
Publisher : CRC Press
Total Pages : 368
Release :
ISBN-10 : 9781482254655
ISBN-13 : 1482254654
Rating : 4/5 (55 Downloads)

Book Synopsis Finite Element Methods for Eigenvalue Problems by : Jiguang Sun

Download or read book Finite Element Methods for Eigenvalue Problems written by Jiguang Sun and published by CRC Press. This book was released on 2016-08-19 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers finite element methods for several typical eigenvalues that arise from science and engineering. Both theory and implementation are covered in depth at the graduate level. The background for typical eigenvalue problems is included along with functional analysis tools, finite element discretization methods, convergence analysis, techniques for matrix evaluation problems, and computer implementation. The book also presents new methods, such as the discontinuous Galerkin method, and new problems, such as the transmission eigenvalue problem.

Eigenvalue Problems in Power Systems

Eigenvalue Problems in Power Systems
Author :
Publisher : CRC Press
Total Pages : 407
Release :
ISBN-10 : 9781000335200
ISBN-13 : 1000335208
Rating : 4/5 (00 Downloads)

Book Synopsis Eigenvalue Problems in Power Systems by : Federico Milano

Download or read book Eigenvalue Problems in Power Systems written by Federico Milano and published by CRC Press. This book was released on 2020-12-22 with total page 407 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book provides a comprehensive taxonomy of non-symmetrical eigenvalues problems as applied to power systems. The book bases all formulations on mathematical concept of “matrix pencils” (MPs) and considers both regular and singular MPs for the eigenvalue problems. Each eigenvalue problem is illustrated with a variety of examples based on electrical circuits and/or power system models and controllers and related data are provided in the appendices of the book. Numerical methods for the solution of all considered eigenvalue problems are discussed. The focus is on large scale problems and, hence, attention is dedicated to the performance and scalability of the methods. The target of the book are researchers and graduated students in Electrical & Computer Science Engineering, both taught and research Master programmes as well as PhD programmes and it: explains eigenvalue problems applied into electrical power systems explains numerical examples on applying the mathematical methods, into studying small signal stability problems of realistic and large electrical power systems includes detailed and in-depth analysis including non-linear and other advanced aspects provides theoretical understanding and advanced numerical techniques essential for secure operation of power systems provides a comprehensive set of illustrative examples that support theoretical discussions

Templates for the Solution of Algebraic Eigenvalue Problems

Templates for the Solution of Algebraic Eigenvalue Problems
Author :
Publisher : SIAM
Total Pages : 430
Release :
ISBN-10 : 9780898714715
ISBN-13 : 0898714710
Rating : 4/5 (15 Downloads)

Book Synopsis Templates for the Solution of Algebraic Eigenvalue Problems by : Zhaojun Bai

Download or read book Templates for the Solution of Algebraic Eigenvalue Problems written by Zhaojun Bai and published by SIAM. This book was released on 2000-01-01 with total page 430 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematics of Computing -- Numerical Analysis.

Inverse Eigenvalue Problems

Inverse Eigenvalue Problems
Author :
Publisher : Oxford University Press
Total Pages : 408
Release :
ISBN-10 : 9780198566649
ISBN-13 : 0198566646
Rating : 4/5 (49 Downloads)

Book Synopsis Inverse Eigenvalue Problems by : Moody Chu

Download or read book Inverse Eigenvalue Problems written by Moody Chu and published by Oxford University Press. This book was released on 2005-06-16 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: Inverse eigenvalue problems arise in a remarkable variety of applications and associated with any inverse eigenvalue problem are two fundamental questions--the theoretical issue of solvability and the practical issue of computability. Both questions are difficult and challenging. In this text, the authors discuss the fundamental questions, some known results, many applications, mathematical properties, a variety of numerical techniques, as well as several open problems.This is the first book in the authoritative Numerical Mathematics and Scientific Computation series to cover numerical linear algebra, a broad area of numerical analysis. Authored by two world-renowned researchers, the book is aimed at graduates and researchers in applied mathematics, engineering and computer science and makes an ideal graduate text.