Natural Scientific Language Processing and Research Knowledge Graphs

Natural Scientific Language Processing and Research Knowledge Graphs
Author :
Publisher : Springer Nature
Total Pages : 313
Release :
ISBN-10 : 9783031657948
ISBN-13 : 3031657942
Rating : 4/5 (48 Downloads)

Book Synopsis Natural Scientific Language Processing and Research Knowledge Graphs by : Georg Rehm

Download or read book Natural Scientific Language Processing and Research Knowledge Graphs written by Georg Rehm and published by Springer Nature. This book was released on with total page 313 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Graph-based Natural Language Processing and Information Retrieval

Graph-based Natural Language Processing and Information Retrieval
Author :
Publisher : Cambridge University Press
Total Pages : 201
Release :
ISBN-10 : 9781139498821
ISBN-13 : 1139498827
Rating : 4/5 (21 Downloads)

Book Synopsis Graph-based Natural Language Processing and Information Retrieval by : Rada Mihalcea

Download or read book Graph-based Natural Language Processing and Information Retrieval written by Rada Mihalcea and published by Cambridge University Press. This book was released on 2011-04-11 with total page 201 pages. Available in PDF, EPUB and Kindle. Book excerpt: Graph theory and the fields of natural language processing and information retrieval are well-studied disciplines. Traditionally, these areas have been perceived as distinct, with different algorithms, different applications and different potential end-users. However, recent research has shown that these disciplines are intimately connected, with a large variety of natural language processing and information retrieval applications finding efficient solutions within graph-theoretical frameworks. This book extensively covers the use of graph-based algorithms for natural language processing and information retrieval. It brings together topics as diverse as lexical semantics, text summarization, text mining, ontology construction, text classification and information retrieval, which are connected by the common underlying theme of the use of graph-theoretical methods for text and information processing tasks. Readers will come away with a firm understanding of the major methods and applications in natural language processing and information retrieval that rely on graph-based representations and algorithms.

Graph Learning and Network Science for Natural Language Processing

Graph Learning and Network Science for Natural Language Processing
Author :
Publisher : CRC Press
Total Pages : 272
Release :
ISBN-10 : 9781000789300
ISBN-13 : 1000789306
Rating : 4/5 (00 Downloads)

Book Synopsis Graph Learning and Network Science for Natural Language Processing by : Muskan Garg

Download or read book Graph Learning and Network Science for Natural Language Processing written by Muskan Garg and published by CRC Press. This book was released on 2022-12-28 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in graph-based natural language processing (NLP) and information retrieval tasks have shown the importance of processing using the Graph of Words method. This book covers recent concrete information, from the basics to advanced level, about graph-based learning, such as neural network-based approaches, computational intelligence for learning parameters and feature reduction, and network science for graph-based NPL. It also contains information about language generation based on graphical theories and language models. Features: Presents a comprehensive study of the interdisciplinary graphical approach to NLP Covers recent computational intelligence techniques for graph-based neural network models Discusses advances in random walk-based techniques, semantic webs, and lexical networks Explores recent research into NLP for graph-based streaming data Reviews advances in knowledge graph embedding and ontologies for NLP approaches This book is aimed at researchers and graduate students in computer science, natural language processing, and deep and machine learning.

Knowledge Graphs

Knowledge Graphs
Author :
Publisher : MIT Press
Total Pages : 559
Release :
ISBN-10 : 9780262045094
ISBN-13 : 0262045095
Rating : 4/5 (94 Downloads)

Book Synopsis Knowledge Graphs by : Mayank Kejriwal

Download or read book Knowledge Graphs written by Mayank Kejriwal and published by MIT Press. This book was released on 2021-03-30 with total page 559 pages. Available in PDF, EPUB and Kindle. Book excerpt: A rigorous and comprehensive textbook covering the major approaches to knowledge graphs, an active and interdisciplinary area within artificial intelligence. The field of knowledge graphs, which allows us to model, process, and derive insights from complex real-world data, has emerged as an active and interdisciplinary area of artificial intelligence over the last decade, drawing on such fields as natural language processing, data mining, and the semantic web. Current projects involve predicting cyberattacks, recommending products, and even gleaning insights from thousands of papers on COVID-19. This textbook offers rigorous and comprehensive coverage of the field. It focuses systematically on the major approaches, both those that have stood the test of time and the latest deep learning methods.

Relevant Search

Relevant Search
Author :
Publisher : Simon and Schuster
Total Pages : 517
Release :
ISBN-10 : 9781638353614
ISBN-13 : 1638353611
Rating : 4/5 (14 Downloads)

Book Synopsis Relevant Search by : John Berryman

Download or read book Relevant Search written by John Berryman and published by Simon and Schuster. This book was released on 2016-06-19 with total page 517 pages. Available in PDF, EPUB and Kindle. Book excerpt: Summary Relevant Search demystifies relevance work. Using Elasticsearch, it teaches you how to return engaging search results to your users, helping you understand and leverage the internals of Lucene-based search engines. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Users are accustomed to and expect instant, relevant search results. To achieve this, you must master the search engine. Yet for many developers, relevance ranking is mysterious or confusing. About the Book Relevant Search demystifies the subject and shows you that a search engine is a programmable relevance framework. You'll learn how to apply Elasticsearch or Solr to your business's unique ranking problems. The book demonstrates how to program relevance and how to incorporate secondary data sources, taxonomies, text analytics, and personalization. In practice, a relevance framework requires softer skills as well, such as collaborating with stakeholders to discover the right relevance requirements for your business. By the end, you'll be able to achieve a virtuous cycle of provable, measurable relevance improvements over a search product's lifetime. What's Inside Techniques for debugging relevance? Applying search engine features to real problems? Using the user interface to guide searchers? A systematic approach to relevance? A business culture focused on improving search About the Reader For developers trying to build smarter search with Elasticsearch or Solr. About the Authors Doug Turnbull is lead relevance consultant at OpenSource Connections, where he frequently speaks and blogs. John Berryman is a data engineer at Eventbrite, where he specializes in recommendations and search. Foreword author, Trey Grainger, is a director of engineering at CareerBuilder and author of Solr in Action. Table of Contents The search relevance problem Search under the hood Debugging your first relevance problem Taming tokens Basic multifield search Term-centric search Shaping the relevance function Providing relevance feedback Designing a relevance-focused search application The relevance-centered enterprise Semantic and personalized search

Knowledge Graphs and Big Data Processing

Knowledge Graphs and Big Data Processing
Author :
Publisher : Springer Nature
Total Pages : 212
Release :
ISBN-10 : 9783030531997
ISBN-13 : 3030531996
Rating : 4/5 (97 Downloads)

Book Synopsis Knowledge Graphs and Big Data Processing by : Valentina Janev

Download or read book Knowledge Graphs and Big Data Processing written by Valentina Janev and published by Springer Nature. This book was released on 2020-07-15 with total page 212 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book is part of the LAMBDA Project (Learning, Applying, Multiplying Big Data Analytics), funded by the European Union, GA No. 809965. Data Analytics involves applying algorithmic processes to derive insights. Nowadays it is used in many industries to allow organizations and companies to make better decisions as well as to verify or disprove existing theories or models. The term data analytics is often used interchangeably with intelligence, statistics, reasoning, data mining, knowledge discovery, and others. The goal of this book is to introduce some of the definitions, methods, tools, frameworks, and solutions for big data processing, starting from the process of information extraction and knowledge representation, via knowledge processing and analytics to visualization, sense-making, and practical applications. Each chapter in this book addresses some pertinent aspect of the data processing chain, with a specific focus on understanding Enterprise Knowledge Graphs, Semantic Big Data Architectures, and Smart Data Analytics solutions. This book is addressed to graduate students from technical disciplines, to professional audiences following continuous education short courses, and to researchers from diverse areas following self-study courses. Basic skills in computer science, mathematics, and statistics are required.

A Practical Guide to Hybrid Natural Language Processing

A Practical Guide to Hybrid Natural Language Processing
Author :
Publisher : Springer Nature
Total Pages : 268
Release :
ISBN-10 : 9783030448301
ISBN-13 : 3030448304
Rating : 4/5 (01 Downloads)

Book Synopsis A Practical Guide to Hybrid Natural Language Processing by : Jose Manuel Gomez-Perez

Download or read book A Practical Guide to Hybrid Natural Language Processing written by Jose Manuel Gomez-Perez and published by Springer Nature. This book was released on 2020-06-16 with total page 268 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides readers with a practical guide to the principles of hybrid approaches to natural language processing (NLP) involving a combination of neural methods and knowledge graphs. To this end, it first introduces the main building blocks and then describes how they can be integrated to support the effective implementation of real-world NLP applications. To illustrate the ideas described, the book also includes a comprehensive set of experiments and exercises involving different algorithms over a selection of domains and corpora in various NLP tasks. Throughout, the authors show how to leverage complementary representations stemming from the analysis of unstructured text corpora as well as the entities and relations described explicitly in a knowledge graph, how to integrate such representations, and how to use the resulting features to effectively solve NLP tasks in a range of domains. In addition, the book offers access to executable code with examples, exercises and real-world applications in key domains, like disinformation analysis and machine reading comprehension of scientific literature. All the examples and exercises proposed in the book are available as executable Jupyter notebooks in a GitHub repository. They are all ready to be run on Google Colaboratory or, if preferred, in a local environment. A valuable resource for anyone interested in the interplay between neural and knowledge-based approaches to NLP, this book is a useful guide for readers with a background in structured knowledge representations as well as those whose main approach to AI is fundamentally based on logic. Further, it will appeal to those whose main background is in the areas of machine and deep learning who are looking for ways to leverage structured knowledge bases to optimize results along the NLP downstream.