Natural Language Processing in Artificial Intelligence

Natural Language Processing in Artificial Intelligence
Author :
Publisher : CRC Press
Total Pages : 297
Release :
ISBN-10 : 9781000711318
ISBN-13 : 1000711315
Rating : 4/5 (18 Downloads)

Book Synopsis Natural Language Processing in Artificial Intelligence by : Brojo Kishore Mishra

Download or read book Natural Language Processing in Artificial Intelligence written by Brojo Kishore Mishra and published by CRC Press. This book was released on 2020-11-01 with total page 297 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume focuses on natural language processing, artificial intelligence, and allied areas. Natural language processing enables communication between people and computers and automatic translation to facilitate easy interaction with others around the world. This book discusses theoretical work and advanced applications, approaches, and techniques for computational models of information and how it is presented by language (artificial, human, or natural) in other ways. It looks at intelligent natural language processing and related models of thought, mental states, reasoning, and other cognitive processes. It explores the difficult problems and challenges related to partiality, underspecification, and context-dependency, which are signature features of information in nature and natural languages. Key features: Addresses the functional frameworks and workflow that are trending in NLP and AI Looks at the latest technologies and the major challenges, issues, and advances in NLP and AI Explores an intelligent field monitoring and automated system through AI with NLP and its implications for the real world Discusses data acquisition and presents a real-time case study with illustrations related to data-intensive technologies in AI and NLP.

Natural Language Processing

Natural Language Processing
Author :
Publisher : Cambridge University Press
Total Pages : 487
Release :
ISBN-10 : 9781108420211
ISBN-13 : 1108420214
Rating : 4/5 (11 Downloads)

Book Synopsis Natural Language Processing by : Yue Zhang

Download or read book Natural Language Processing written by Yue Zhang and published by Cambridge University Press. This book was released on 2021-01-07 with total page 487 pages. Available in PDF, EPUB and Kindle. Book excerpt: This undergraduate textbook introduces essential machine learning concepts in NLP in a unified and gentle mathematical framework.

Deep Natural Language Processing and AI Applications for Industry 5.0

Deep Natural Language Processing and AI Applications for Industry 5.0
Author :
Publisher : IGI Global
Total Pages : 240
Release :
ISBN-10 : 9781799877301
ISBN-13 : 1799877302
Rating : 4/5 (01 Downloads)

Book Synopsis Deep Natural Language Processing and AI Applications for Industry 5.0 by : Tanwar, Poonam

Download or read book Deep Natural Language Processing and AI Applications for Industry 5.0 written by Tanwar, Poonam and published by IGI Global. This book was released on 2021-06-25 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: To sustain and stay at the top of the market and give absolute comfort to the consumers, industries are using different strategies and technologies. Natural language processing (NLP) is a technology widely penetrating the market, irrespective of the industry and domains. It is extensively applied in businesses today, and it is the buzzword in every engineer’s life. NLP can be implemented in all those areas where artificial intelligence is applicable either by simplifying the communication process or by refining and analyzing information. Neural machine translation has improved the imitation of professional translations over the years. When applied in neural machine translation, NLP helps educate neural machine networks. This can be used by industries to translate low-impact content including emails, regulatory texts, etc. Such machine translation tools speed up communication with partners while enriching other business interactions. Deep Natural Language Processing and AI Applications for Industry 5.0 provides innovative research on the latest findings, ideas, and applications in fields of interest that fall under the scope of NLP including computational linguistics, deep NLP, web analysis, sentiments analysis for business, and industry perspective. This book covers a wide range of topics such as deep learning, deepfakes, text mining, blockchain technology, and more, making it a crucial text for anyone interested in NLP and artificial intelligence, including academicians, researchers, professionals, industry experts, business analysts, data scientists, data analysts, healthcare system designers, intelligent system designers, practitioners, and students.

Introduction to Natural Language Processing

Introduction to Natural Language Processing
Author :
Publisher : MIT Press
Total Pages : 535
Release :
ISBN-10 : 9780262042840
ISBN-13 : 0262042843
Rating : 4/5 (40 Downloads)

Book Synopsis Introduction to Natural Language Processing by : Jacob Eisenstein

Download or read book Introduction to Natural Language Processing written by Jacob Eisenstein and published by MIT Press. This book was released on 2019-10-01 with total page 535 pages. Available in PDF, EPUB and Kindle. Book excerpt: A survey of computational methods for understanding, generating, and manipulating human language, which offers a synthesis of classical representations and algorithms with contemporary machine learning techniques. This textbook provides a technical perspective on natural language processing—methods for building computer software that understands, generates, and manipulates human language. It emphasizes contemporary data-driven approaches, focusing on techniques from supervised and unsupervised machine learning. The first section establishes a foundation in machine learning by building a set of tools that will be used throughout the book and applying them to word-based textual analysis. The second section introduces structured representations of language, including sequences, trees, and graphs. The third section explores different approaches to the representation and analysis of linguistic meaning, ranging from formal logic to neural word embeddings. The final section offers chapter-length treatments of three transformative applications of natural language processing: information extraction, machine translation, and text generation. End-of-chapter exercises include both paper-and-pencil analysis and software implementation. The text synthesizes and distills a broad and diverse research literature, linking contemporary machine learning techniques with the field's linguistic and computational foundations. It is suitable for use in advanced undergraduate and graduate-level courses and as a reference for software engineers and data scientists. Readers should have a background in computer programming and college-level mathematics. After mastering the material presented, students will have the technical skill to build and analyze novel natural language processing systems and to understand the latest research in the field.

Practical Natural Language Processing

Practical Natural Language Processing
Author :
Publisher : O'Reilly Media
Total Pages : 455
Release :
ISBN-10 : 9781492054023
ISBN-13 : 149205402X
Rating : 4/5 (23 Downloads)

Book Synopsis Practical Natural Language Processing by : Sowmya Vajjala

Download or read book Practical Natural Language Processing written by Sowmya Vajjala and published by O'Reilly Media. This book was released on 2020-06-17 with total page 455 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many books and courses tackle natural language processing (NLP) problems with toy use cases and well-defined datasets. But if you want to build, iterate, and scale NLP systems in a business setting and tailor them for particular industry verticals, this is your guide. Software engineers and data scientists will learn how to navigate the maze of options available at each step of the journey. Through the course of the book, authors Sowmya Vajjala, Bodhisattwa Majumder, Anuj Gupta, and Harshit Surana will guide you through the process of building real-world NLP solutions embedded in larger product setups. You’ll learn how to adapt your solutions for different industry verticals such as healthcare, social media, and retail. With this book, you’ll: Understand the wide spectrum of problem statements, tasks, and solution approaches within NLP Implement and evaluate different NLP applications using machine learning and deep learning methods Fine-tune your NLP solution based on your business problem and industry vertical Evaluate various algorithms and approaches for NLP product tasks, datasets, and stages Produce software solutions following best practices around release, deployment, and DevOps for NLP systems Understand best practices, opportunities, and the roadmap for NLP from a business and product leader’s perspective

Deep Learning in Natural Language Processing

Deep Learning in Natural Language Processing
Author :
Publisher : Springer
Total Pages : 338
Release :
ISBN-10 : 9789811052095
ISBN-13 : 9811052093
Rating : 4/5 (95 Downloads)

Book Synopsis Deep Learning in Natural Language Processing by : Li Deng

Download or read book Deep Learning in Natural Language Processing written by Li Deng and published by Springer. This book was released on 2018-05-23 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years, deep learning has fundamentally changed the landscapes of a number of areas in artificial intelligence, including speech, vision, natural language, robotics, and game playing. In particular, the striking success of deep learning in a wide variety of natural language processing (NLP) applications has served as a benchmark for the advances in one of the most important tasks in artificial intelligence. This book reviews the state of the art of deep learning research and its successful applications to major NLP tasks, including speech recognition and understanding, dialogue systems, lexical analysis, parsing, knowledge graphs, machine translation, question answering, sentiment analysis, social computing, and natural language generation from images. Outlining and analyzing various research frontiers of NLP in the deep learning era, it features self-contained, comprehensive chapters written by leading researchers in the field. A glossary of technical terms and commonly used acronyms in the intersection of deep learning and NLP is also provided. The book appeals to advanced undergraduate and graduate students, post-doctoral researchers, lecturers and industrial researchers, as well as anyone interested in deep learning and natural language processing.

Applied Natural Language Processing in the Enterprise

Applied Natural Language Processing in the Enterprise
Author :
Publisher : "O'Reilly Media, Inc."
Total Pages : 336
Release :
ISBN-10 : 9781492062547
ISBN-13 : 1492062545
Rating : 4/5 (47 Downloads)

Book Synopsis Applied Natural Language Processing in the Enterprise by : Ankur A. Patel

Download or read book Applied Natural Language Processing in the Enterprise written by Ankur A. Patel and published by "O'Reilly Media, Inc.". This book was released on 2021-05-12 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: NLP has exploded in popularity over the last few years. But while Google, Facebook, OpenAI, and others continue to release larger language models, many teams still struggle with building NLP applications that live up to the hype. This hands-on guide helps you get up to speed on the latest and most promising trends in NLP. With a basic understanding of machine learning and some Python experience, you'll learn how to build, train, and deploy models for real-world applications in your organization. Authors Ankur Patel and Ajay Uppili Arasanipalai guide you through the process using code and examples that highlight the best practices in modern NLP. Use state-of-the-art NLP models such as BERT and GPT-3 to solve NLP tasks such as named entity recognition, text classification, semantic search, and reading comprehension Train NLP models with performance comparable or superior to that of out-of-the-box systems Learn about Transformer architecture and modern tricks like transfer learning that have taken the NLP world by storm Become familiar with the tools of the trade, including spaCy, Hugging Face, and fast.ai Build core parts of the NLP pipeline--including tokenizers, embeddings, and language models--from scratch using Python and PyTorch Take your models out of Jupyter notebooks and learn how to deploy, monitor, and maintain them in production