Multiscale Methods

Multiscale Methods
Author :
Publisher : Oxford University Press
Total Pages : 631
Release :
ISBN-10 : 9780199233854
ISBN-13 : 0199233853
Rating : 4/5 (54 Downloads)

Book Synopsis Multiscale Methods by : Jacob Fish

Download or read book Multiscale Methods written by Jacob Fish and published by Oxford University Press. This book was released on 2010 with total page 631 pages. Available in PDF, EPUB and Kindle. Book excerpt: Small scale features and processes occurring at nanometer and femtosecond scales have a profound impact on what happens at a larger scale and over an extensive period of time. The primary objective of this volume is to reflect the state-of-the-art in multiscale mathematics, modeling, and simulations and to address the following barriers: What is the information that needs to be transferred from one model or scale to another and what physical principles must be satisfied during thetransfer of information? What are the optimal ways to achieve such transfer of information? How can variability of physical parameters at multiple scales be quantified and how can it be accounted for to ensure design robustness?The multiscale approaches in space and time presented in this volume are grouped into two main categories: information-passing and concurrent. In the concurrent approaches various scales are simultaneously resolved, whereas in the information-passing methods the fine scale is modeled and its gross response is infused into the continuum scale. The issue of reliability of multiscale modeling and simulation tools which focus on a hierarchy of multiscale models and an a posteriori model of errorestimation including uncertainty quantification, is discussed in several chapters. Component software that can be effectively combined to address a wide range of multiscale simulations is also described. Applications range from advanced materials to nanoelectromechanical systems (NEMS), biologicalsystems, and nanoporous catalysts where physical phenomena operates across 12 orders of magnitude in time scales and 10 orders of magnitude in spatial scales.This volume is a valuable reference book for scientists, engineers and graduate students practicing in traditional engineering and science disciplines as well as in emerging fields of nanotechnology, biotechnology, microelectronics and energy.

Multiscale Methods in Science and Engineering

Multiscale Methods in Science and Engineering
Author :
Publisher : Springer Science & Business Media
Total Pages : 300
Release :
ISBN-10 : 9783540253358
ISBN-13 : 3540253351
Rating : 4/5 (58 Downloads)

Book Synopsis Multiscale Methods in Science and Engineering by : Björn Engquist

Download or read book Multiscale Methods in Science and Engineering written by Björn Engquist and published by Springer Science & Business Media. This book was released on 2005-05-24 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multiscale problems naturally pose severe challenges for computational science and engineering. The smaller scales must be well resolved over the range of the larger scales. Challenging multiscale problems are very common and are found in e.g. materials science, fluid mechanics, electrical and mechanical engineering. Homogenization, subgrid modelling, heterogeneous multiscale methods, multigrid, multipole, and adaptive algorithms are examples of methods to tackle these problems. This volume is an overview of current mathematical and computational methods for problems with multiple scales with applications in chemistry, physics and engineering.

Multiscale and Multiresolution Methods

Multiscale and Multiresolution Methods
Author :
Publisher : Springer Science & Business Media
Total Pages : 412
Release :
ISBN-10 : 3540424202
ISBN-13 : 9783540424208
Rating : 4/5 (02 Downloads)

Book Synopsis Multiscale and Multiresolution Methods by : Timothy J. Barth

Download or read book Multiscale and Multiresolution Methods written by Timothy J. Barth and published by Springer Science & Business Media. This book was released on 2001-11-20 with total page 412 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many computionally challenging problems omnipresent in science and engineering exhibit multiscale phenomena so that the task of computing or even representing all scales of action is computationally very expensive unless the multiscale nature of these problems is exploited in a fundamental way. Some diverse examples of practical interest include the computation of fluid turbulence, structural analysis of composite materials, terabyte data mining, image processing, and a multitude of others. This book consists of both invited and contributed articles which address many facets of efficient multiscale representation and scientific computation from varied viewpoints such as hierarchical data representations, multilevel algorithms, algebraic homogeni- zation, and others. This book should be of particular interest to readers interested in recent and emerging trends in multiscale and multiresolution computation with application to a wide range of practical problems.

Multiscale Modeling and Simulation in Science

Multiscale Modeling and Simulation in Science
Author :
Publisher : Springer Science & Business Media
Total Pages : 332
Release :
ISBN-10 : 9783540888574
ISBN-13 : 3540888578
Rating : 4/5 (74 Downloads)

Book Synopsis Multiscale Modeling and Simulation in Science by : Björn Engquist

Download or read book Multiscale Modeling and Simulation in Science written by Björn Engquist and published by Springer Science & Business Media. This book was released on 2009-02-11 with total page 332 pages. Available in PDF, EPUB and Kindle. Book excerpt: Most problems in science involve many scales in time and space. An example is turbulent ?ow where the important large scale quantities of lift and drag of a wing depend on the behavior of the small vortices in the boundarylayer. Another example is chemical reactions with concentrations of the species varying over seconds and hours while the time scale of the oscillations of the chemical bonds is of the order of femtoseconds. A third example from structural mechanics is the stress and strain in a solid beam which is well described by macroscopic equations but at the tip of a crack modeling details on a microscale are needed. A common dif?culty with the simulation of these problems and many others in physics, chemistry and biology is that an attempt to represent all scales will lead to an enormous computational problem with unacceptably long computation times and large memory requirements. On the other hand, if the discretization at a coarse level ignoresthe?nescale informationthenthesolutionwillnotbephysicallymeaningful. The in?uence of the ?ne scales must be incorporated into the model. This volume is the result of a Summer School on Multiscale Modeling and S- ulation in Science held at Boso ¤n, Lidingo ¤ outside Stockholm, Sweden, in June 2007. Sixty PhD students from applied mathematics, the sciences and engineering parti- pated in the summer school.

Multiscale Methods

Multiscale Methods
Author :
Publisher : Springer Science & Business Media
Total Pages : 314
Release :
ISBN-10 : 9780387738291
ISBN-13 : 0387738290
Rating : 4/5 (91 Downloads)

Book Synopsis Multiscale Methods by : Grigoris Pavliotis

Download or read book Multiscale Methods written by Grigoris Pavliotis and published by Springer Science & Business Media. This book was released on 2008-01-18 with total page 314 pages. Available in PDF, EPUB and Kindle. Book excerpt: This introduction to multiscale methods gives you a broad overview of the methods’ many uses and applications. The book begins by setting the theoretical foundations of the methods and then moves on to develop models and prove theorems. Extensive use of examples shows how to apply multiscale methods to solving a variety of problems. Exercises then enable you to build your own skills and put them into practice. Extensions and generalizations of the results presented in the book, as well as references to the literature, are provided in the Discussion and Bibliography section at the end of each chapter.With the exception of Chapter One, all chapters are supplemented with exercises.

Multiscale Methods in Computational Mechanics

Multiscale Methods in Computational Mechanics
Author :
Publisher : Springer Science & Business Media
Total Pages : 451
Release :
ISBN-10 : 9789048198092
ISBN-13 : 9048198097
Rating : 4/5 (92 Downloads)

Book Synopsis Multiscale Methods in Computational Mechanics by : René de Borst

Download or read book Multiscale Methods in Computational Mechanics written by René de Borst and published by Springer Science & Business Media. This book was released on 2010-10-09 with total page 451 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work gives a modern, up-to-date account of recent developments in computational multiscale mechanics. Both upscaling and concurrent computing methodologies will be addressed for a range of application areas in computational solid and fluid mechanics: Scale transitions in materials, turbulence in fluid-structure interaction problems, multiscale/multilevel optimization, multiscale poromechanics. A Dutch-German research group that consists of qualified and well-known researchers in the field has worked for six years on the topic of computational multiscale mechanics. This text provides a unique opportunity to consolidate and disseminate the knowledge gained in this project. The addition of chapters written by experts outside this working group provides a broad and multifaceted view of this rapidly evolving field.

Practical Multiscaling

Practical Multiscaling
Author :
Publisher : John Wiley & Sons
Total Pages : 420
Release :
ISBN-10 : 9781118534854
ISBN-13 : 1118534859
Rating : 4/5 (54 Downloads)

Book Synopsis Practical Multiscaling by : Jacob Fish

Download or read book Practical Multiscaling written by Jacob Fish and published by John Wiley & Sons. This book was released on 2013-09-03 with total page 420 pages. Available in PDF, EPUB and Kindle. Book excerpt: Practical Multiscaling covers fundamental modelling techniques aimed at bridging diverse temporal and spatial scales ranging from the atomic level to a full-scale product level. It focuses on practical multiscale methods that account for fine-scale (material) details but do not require their precise resolution. The text material evolved from over 20 years of teaching experience at Rensselaer and Columbia University, as well as from practical experience gained in the application of multiscale software. This book comprehensively covers theory and implementation, providing a detailed exposition of the state-of-the-art multiscale theories and their insertion into conventional (single-scale) finite element code architecture. The robustness and design aspects of multiscale methods are also emphasised, which is accomplished via four building blocks: upscaling of information, systematic reduction of information, characterization of information utilizing experimental data, and material optimization. To ensure the reader gains hands-on experience, a companion website hosting a lite version of the multiscale design software (MDS-Lite) is available. Key features: Combines fundamental theory and practical methods of multiscale modelling Covers the state-of-the-art multiscale theories and examines their practical usability in design Covers applications of multiscale methods Accompanied by a continuously updated website hosting the multiscale design software Illustrated with colour images Practical Multiscaling is an ideal textbook for graduate students studying multiscale science and engineering. It is also a must-have reference for government laboratories, researchers and practitioners in civil, aerospace, pharmaceutical, electronics, and automotive industries, and commercial software vendors.