Multiple Imputation and its Application

Multiple Imputation and its Application
Author :
Publisher : John Wiley & Sons
Total Pages : 368
Release :
ISBN-10 : 9781119942276
ISBN-13 : 1119942276
Rating : 4/5 (76 Downloads)

Book Synopsis Multiple Imputation and its Application by : James Carpenter

Download or read book Multiple Imputation and its Application written by James Carpenter and published by John Wiley & Sons. This book was released on 2012-12-21 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt: A practical guide to analysing partially observeddata. Collecting, analysing and drawing inferences from data iscentral to research in the medical and social sciences.Unfortunately, it is rarely possible to collect all the intendeddata. The literature on inference from the resultingincomplete data is now huge, and continues to grow both asmethods are developed for large and complex data structures, and asincreasing computer power and suitable software enable researchersto apply these methods. This book focuses on a particular statistical method foranalysing and drawing inferences from incomplete data, calledMultiple Imputation (MI). MI is attractive because it is bothpractical and widely applicable. The authors aim is to clarify theissues raised by missing data, describing the rationale for MI, therelationship between the various imputation models and associatedalgorithms and its application to increasingly complex datastructures. Multiple Imputation and its Application: Discusses the issues raised by the analysis of partiallyobserved data, and the assumptions on which analyses rest. Presents a practical guide to the issues to consider whenanalysing incomplete data from both observational studies andrandomized trials. Provides a detailed discussion of the practical use of MI withreal-world examples drawn from medical and social statistics. Explores handling non-linear relationships and interactionswith multiple imputation, survival analysis, multilevel multipleimputation, sensitivity analysis via multiple imputation, usingnon-response weights with multiple imputation and doubly robustmultiple imputation. Multiple Imputation and its Application is aimed atquantitative researchers and students in the medical and socialsciences with the aim of clarifying the issues raised by theanalysis of incomplete data data, outlining the rationale for MIand describing how to consider and address the issues that arise inits application.

Flexible Imputation of Missing Data, Second Edition

Flexible Imputation of Missing Data, Second Edition
Author :
Publisher : CRC Press
Total Pages : 444
Release :
ISBN-10 : 9780429960352
ISBN-13 : 0429960352
Rating : 4/5 (52 Downloads)

Book Synopsis Flexible Imputation of Missing Data, Second Edition by : Stef van Buuren

Download or read book Flexible Imputation of Missing Data, Second Edition written by Stef van Buuren and published by CRC Press. This book was released on 2018-07-17 with total page 444 pages. Available in PDF, EPUB and Kindle. Book excerpt: Missing data pose challenges to real-life data analysis. Simple ad-hoc fixes, like deletion or mean imputation, only work under highly restrictive conditions, which are often not met in practice. Multiple imputation replaces each missing value by multiple plausible values. The variability between these replacements reflects our ignorance of the true (but missing) value. Each of the completed data set is then analyzed by standard methods, and the results are pooled to obtain unbiased estimates with correct confidence intervals. Multiple imputation is a general approach that also inspires novel solutions to old problems by reformulating the task at hand as a missing-data problem. This is the second edition of a popular book on multiple imputation, focused on explaining the application of methods through detailed worked examples using the MICE package as developed by the author. This new edition incorporates the recent developments in this fast-moving field. This class-tested book avoids mathematical and technical details as much as possible: formulas are accompanied by verbal statements that explain the formula in accessible terms. The book sharpens the reader’s intuition on how to think about missing data, and provides all the tools needed to execute a well-grounded quantitative analysis in the presence of missing data.

Multiple Imputation of Missing Data in Practice

Multiple Imputation of Missing Data in Practice
Author :
Publisher : CRC Press
Total Pages : 419
Release :
ISBN-10 : 9780429530975
ISBN-13 : 0429530978
Rating : 4/5 (75 Downloads)

Book Synopsis Multiple Imputation of Missing Data in Practice by : Yulei He

Download or read book Multiple Imputation of Missing Data in Practice written by Yulei He and published by CRC Press. This book was released on 2021-11-20 with total page 419 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multiple Imputation of Missing Data in Practice: Basic Theory and Analysis Strategies provides a comprehensive introduction to the multiple imputation approach to missing data problems that are often encountered in data analysis. Over the past 40 years or so, multiple imputation has gone through rapid development in both theories and applications. It is nowadays the most versatile, popular, and effective missing-data strategy that is used by researchers and practitioners across different fields. There is a strong need to better understand and learn about multiple imputation in the research and practical community. Accessible to a broad audience, this book explains statistical concepts of missing data problems and the associated terminology. It focuses on how to address missing data problems using multiple imputation. It describes the basic theory behind multiple imputation and many commonly-used models and methods. These ideas are illustrated by examples from a wide variety of missing data problems. Real data from studies with different designs and features (e.g., cross-sectional data, longitudinal data, complex surveys, survival data, studies subject to measurement error, etc.) are used to demonstrate the methods. In order for readers not only to know how to use the methods, but understand why multiple imputation works and how to choose appropriate methods, simulation studies are used to assess the performance of the multiple imputation methods. Example datasets and sample programming code are either included in the book or available at a github site (https://github.com/he-zhang-hsu/multiple_imputation_book). Key Features Provides an overview of statistical concepts that are useful for better understanding missing data problems and multiple imputation analysis Provides a detailed discussion on multiple imputation models and methods targeted to different types of missing data problems (e.g., univariate and multivariate missing data problems, missing data in survival analysis, longitudinal data, complex surveys, etc.) Explores measurement error problems with multiple imputation Discusses analysis strategies for multiple imputation diagnostics Discusses data production issues when the goal of multiple imputation is to release datasets for public use, as done by organizations that process and manage large-scale surveys with nonresponse problems For some examples, illustrative datasets and sample programming code from popular statistical packages (e.g., SAS, R, WinBUGS) are included in the book. For others, they are available at a github site (https://github.com/he-zhang-hsu/multiple_imputation_book)

Multiple Imputation and its Application

Multiple Imputation and its Application
Author :
Publisher : John Wiley & Sons
Total Pages : 469
Release :
ISBN-10 : 9781119756101
ISBN-13 : 1119756103
Rating : 4/5 (01 Downloads)

Book Synopsis Multiple Imputation and its Application by : James R. Carpenter

Download or read book Multiple Imputation and its Application written by James R. Carpenter and published by John Wiley & Sons. This book was released on 2023-07-20 with total page 469 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multiple Imputation and its Application The most up-to-date edition of a bestselling guide to analyzing partially observed data In this comprehensively revised Second Edition of Multiple Imputation and its Application, a team of distinguished statisticians delivers an overview of the issues raised by missing data, the rationale for multiple imputation as a solution, and the practicalities of applying it in a multitude of settings. With an accessible and carefully structured presentation aimed at quantitative researchers, Multiple Imputation and its Application is illustrated with a range of examples and offers key mathematical details. The book includes a wide range of theoretical and computer-based exercises, tested in the classroom, which are especially useful for users of R or Stata. Readers will find: A comprehensive overview of one of the most effective and popular methodologies for dealing with incomplete data sets Careful discussion of key concepts A range of examples illustrating the key ideas Practical advice on using multiple imputation Exercises and examples designed for use in the classroom and/or private study Written for applied researchers looking to use multiple imputation with confidence, and for methods researchers seeking an accessible overview of the topic, Multiple Imputation and its Application will also earn a place in the libraries of graduate students undertaking quantitative analyses.

Multiple Imputation for Nonresponse in Surveys

Multiple Imputation for Nonresponse in Surveys
Author :
Publisher : John Wiley & Sons
Total Pages : 258
Release :
ISBN-10 : 9780470317365
ISBN-13 : 0470317361
Rating : 4/5 (65 Downloads)

Book Synopsis Multiple Imputation for Nonresponse in Surveys by : Donald B. Rubin

Download or read book Multiple Imputation for Nonresponse in Surveys written by Donald B. Rubin and published by John Wiley & Sons. This book was released on 2009-09-25 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: Demonstrates how nonresponse in sample surveys and censuses can be handled by replacing each missing value with two or more multiple imputations. Clearly illustrates the advantages of modern computing to such handle surveys, and demonstrates the benefit of this statistical technique for researchers who must analyze them. Also presents the background for Bayesian and frequentist theory. After establishing that only standard complete-data methods are needed to analyze a multiply-imputed set, the text evaluates procedures in general circumstances, outlining specific procedures for creating imputations in both the ignorable and nonignorable cases. Examples and exercises reinforce ideas, and the interplay of Bayesian and frequentist ideas presents a unified picture of modern statistics.

Multiple Imputation of Missing Data Using SAS

Multiple Imputation of Missing Data Using SAS
Author :
Publisher : SAS Institute
Total Pages : 328
Release :
ISBN-10 : 9781629592039
ISBN-13 : 162959203X
Rating : 4/5 (39 Downloads)

Book Synopsis Multiple Imputation of Missing Data Using SAS by : Patricia Berglund

Download or read book Multiple Imputation of Missing Data Using SAS written by Patricia Berglund and published by SAS Institute. This book was released on 2014-07-01 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: Find guidance on using SAS for multiple imputation and solving common missing data issues. Multiple Imputation of Missing Data Using SAS provides both theoretical background and constructive solutions for those working with incomplete data sets in an engaging example-driven format. It offers practical instruction on the use of SAS for multiple imputation and provides numerous examples that use a variety of public release data sets with applications to survey data. Written for users with an intermediate background in SAS programming and statistics, this book is an excellent resource for anyone seeking guidance on multiple imputation. The authors cover the MI and MIANALYZE procedures in detail, along with other procedures used for analysis of complete data sets. They guide analysts through the multiple imputation process, including evaluation of missing data patterns, choice of an imputation method, execution of the process, and interpretation of results. Topics discussed include how to deal with missing data problems in a statistically appropriate manner, how to intelligently select an imputation method, how to incorporate the uncertainty introduced by the imputation process, and how to incorporate the complex sample design (if appropriate) through use of the SAS SURVEY procedures. Discover the theoretical background and see extensive applications of the multiple imputation process in action. This book is part of the SAS Press program.

Multiple Imputation in Practice

Multiple Imputation in Practice
Author :
Publisher : CRC Press
Total Pages : 239
Release :
ISBN-10 : 9781351650311
ISBN-13 : 1351650319
Rating : 4/5 (11 Downloads)

Book Synopsis Multiple Imputation in Practice by : Trivellore Raghunathan

Download or read book Multiple Imputation in Practice written by Trivellore Raghunathan and published by CRC Press. This book was released on 2018-07-20 with total page 239 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multiple Imputation in Practice: With Examples Using IVEware provides practical guidance on multiple imputation analysis, from simple to complex problems using real and simulated data sets. Data sets from cross-sectional, retrospective, prospective and longitudinal studies, randomized clinical trials, complex sample surveys are used to illustrate both simple, and complex analyses. Version 0.3 of IVEware, the software developed by the University of Michigan, is used to illustrate analyses. IVEware can multiply impute missing values, analyze multiply imputed data sets, incorporate complex sample design features, and be used for other statistical analyses framed as missing data problems. IVEware can be used under Windows, Linux, and Mac, and with software packages like SAS, SPSS, Stata, and R, or as a stand-alone tool. This book will be helpful to researchers looking for guidance on the use of multiple imputation to address missing data problems, along with examples of correct analysis techniques.