Data Mining in Finance

Data Mining in Finance
Author :
Publisher : Springer Science & Business Media
Total Pages : 323
Release :
ISBN-10 : 9780306470189
ISBN-13 : 0306470187
Rating : 4/5 (89 Downloads)

Book Synopsis Data Mining in Finance by : Boris Kovalerchuk

Download or read book Data Mining in Finance written by Boris Kovalerchuk and published by Springer Science & Business Media. This book was released on 2005-12-11 with total page 323 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data Mining in Finance presents a comprehensive overview of major algorithmic approaches to predictive data mining, including statistical, neural networks, ruled-based, decision-tree, and fuzzy-logic methods, and then examines the suitability of these approaches to financial data mining. The book focuses specifically on relational data mining (RDM), which is a learning method able to learn more expressive rules than other symbolic approaches. RDM is thus better suited for financial mining, because it is able to make greater use of underlying domain knowledge. Relational data mining also has a better ability to explain the discovered rules - an ability critical for avoiding spurious patterns which inevitably arise when the number of variables examined is very large. The earlier algorithms for relational data mining, also known as inductive logic programming (ILP), suffer from a relative computational inefficiency and have rather limited tools for processing numerical data. Data Mining in Finance introduces a new approach, combining relational data mining with the analysis of statistical significance of discovered rules. This reduces the search space and speeds up the algorithms. The book also presents interactive and fuzzy-logic tools for `mining' the knowledge from the experts, further reducing the search space. Data Mining in Finance contains a number of practical examples of forecasting S&P 500, exchange rates, stock directions, and rating stocks for portfolio, allowing interested readers to start building their own models. This book is an excellent reference for researchers and professionals in the fields of artificial intelligence, machine learning, data mining, knowledge discovery, and applied mathematics.

Handbook Of Financial Econometrics, Mathematics, Statistics, And Machine Learning (In 4 Volumes)

Handbook Of Financial Econometrics, Mathematics, Statistics, And Machine Learning (In 4 Volumes)
Author :
Publisher : World Scientific
Total Pages : 5053
Release :
ISBN-10 : 9789811202407
ISBN-13 : 9811202400
Rating : 4/5 (07 Downloads)

Book Synopsis Handbook Of Financial Econometrics, Mathematics, Statistics, And Machine Learning (In 4 Volumes) by : Cheng Few Lee

Download or read book Handbook Of Financial Econometrics, Mathematics, Statistics, And Machine Learning (In 4 Volumes) written by Cheng Few Lee and published by World Scientific. This book was released on 2020-07-30 with total page 5053 pages. Available in PDF, EPUB and Kindle. Book excerpt: This four-volume handbook covers important concepts and tools used in the fields of financial econometrics, mathematics, statistics, and machine learning. Econometric methods have been applied in asset pricing, corporate finance, international finance, options and futures, risk management, and in stress testing for financial institutions. This handbook discusses a variety of econometric methods, including single equation multiple regression, simultaneous equation regression, and panel data analysis, among others. It also covers statistical distributions, such as the binomial and log normal distributions, in light of their applications to portfolio theory and asset management in addition to their use in research regarding options and futures contracts.In both theory and methodology, we need to rely upon mathematics, which includes linear algebra, geometry, differential equations, Stochastic differential equation (Ito calculus), optimization, constrained optimization, and others. These forms of mathematics have been used to derive capital market line, security market line (capital asset pricing model), option pricing model, portfolio analysis, and others.In recent times, an increased importance has been given to computer technology in financial research. Different computer languages and programming techniques are important tools for empirical research in finance. Hence, simulation, machine learning, big data, and financial payments are explored in this handbook.Led by Distinguished Professor Cheng Few Lee from Rutgers University, this multi-volume work integrates theoretical, methodological, and practical issues based on his years of academic and industry experience.

Mining Data for Financial Applications

Mining Data for Financial Applications
Author :
Publisher : Springer Nature
Total Pages : 161
Release :
ISBN-10 : 9783030669812
ISBN-13 : 3030669815
Rating : 4/5 (12 Downloads)

Book Synopsis Mining Data for Financial Applications by : Valerio Bitetta

Download or read book Mining Data for Financial Applications written by Valerio Bitetta and published by Springer Nature. This book was released on 2021-01-14 with total page 161 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes revised selected papers from the 5th Workshop on Mining Data for Financial Applications, MIDAS 2020, held in conjunction with ECML PKDD 2020, in Ghent, Belgium, in September 2020.* The 8 full and 3 short papers presented in this volume were carefully reviewed and selected from 15 submissions. They deal with challenges, potentialities, and applications of leveraging data-mining tasks regarding problems in the financial domain. *The workshop was held virtually due to the COVID-19 pandemic. “Information Extraction from the GDELT Database to Analyse EU Sovereign Bond Markets” and “Exploring the Predictive Power of News and Neural Machine Learning Models for Economic Forecasting” are available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.

Ethical Data Mining Applications for Socio-Economic Development

Ethical Data Mining Applications for Socio-Economic Development
Author :
Publisher : IGI Global
Total Pages : 360
Release :
ISBN-10 : 9781466640795
ISBN-13 : 1466640790
Rating : 4/5 (95 Downloads)

Book Synopsis Ethical Data Mining Applications for Socio-Economic Development by : Hakikur Rahman

Download or read book Ethical Data Mining Applications for Socio-Economic Development written by Hakikur Rahman and published by IGI Global. This book was released on 2013-05-31 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book provides an overview of data mining techniques under an ethical lens, investigating developments in research best practices and examining experimental cases to identify potential ethical dilemmas in the information and communications technology sector"--Provided by publisher.

From Opinion Mining to Financial Argument Mining

From Opinion Mining to Financial Argument Mining
Author :
Publisher : Springer Nature
Total Pages : 102
Release :
ISBN-10 : 9789811628818
ISBN-13 : 9811628815
Rating : 4/5 (18 Downloads)

Book Synopsis From Opinion Mining to Financial Argument Mining by : Chung-Chi Chen

Download or read book From Opinion Mining to Financial Argument Mining written by Chung-Chi Chen and published by Springer Nature. This book was released on 2021 with total page 102 pages. Available in PDF, EPUB and Kindle. Book excerpt: Opinion mining is a prevalent research issue in many domains. In the financial domain, however, it is still in the early stages. Most of the researches on this topic only focus on the coarse-grained market sentiment analysis, i.e., 2-way classification for bullish/bearish. Thanks to the recent financial technology (FinTech) development, some interdisciplinary researchers start to involve in the in-depth analysis of investors' opinions. These works indicate the trend toward fine-grained opinion mining in the financial domain. When expressing opinions in finance, terms like bullish/bearish often spring to mind. However, the market sentiment of the financial instrument is just one type of opinion in the financial industry. Like other industries such as manufacturing and textiles, the financial industry also has a large number of products. Financial services are also a major business for many financial companies, especially in the context of the recent FinTech trend. For instance, many commercial banks focus on loans and credit cards. Although there are a variety of issues that could be explored in the financial domain, most researchers in the AI and NLP communities only focus on the market sentiment of the stock or foreign exchange. This open access book addresses several research issues that can broaden the research topics in the AI community. It also provides an overview of the status quo in fine-grained financial opinion mining to offer insights into the futures goals. For a better understanding of the past and the current research, it also discusses the components of financial opinions one-by-one with the related works and highlights some possible research avenues, providing a research agenda with both micro- and macro-views toward financial opinions.

Data Mining Applications for Empowering Knowledge Societies

Data Mining Applications for Empowering Knowledge Societies
Author :
Publisher : IGI Global
Total Pages : 356
Release :
ISBN-10 : 9781599046594
ISBN-13 : 1599046598
Rating : 4/5 (94 Downloads)

Book Synopsis Data Mining Applications for Empowering Knowledge Societies by : Rahman, Hakikur

Download or read book Data Mining Applications for Empowering Knowledge Societies written by Rahman, Hakikur and published by IGI Global. This book was released on 2008-07-31 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents an overview of the main issues of data mining, including its classification, regression, clustering, and ethical issues. Provides readers with knowledge enhancing processes as well as a wide spectrum of data mining applications.

Contemporary Perspectives in Data Mining, Volume 2

Contemporary Perspectives in Data Mining, Volume 2
Author :
Publisher : IAP
Total Pages : 237
Release :
ISBN-10 : 9781681230894
ISBN-13 : 1681230895
Rating : 4/5 (94 Downloads)

Book Synopsis Contemporary Perspectives in Data Mining, Volume 2 by : Kenneth D. Lawrence

Download or read book Contemporary Perspectives in Data Mining, Volume 2 written by Kenneth D. Lawrence and published by IAP. This book was released on 2015-07-01 with total page 237 pages. Available in PDF, EPUB and Kindle. Book excerpt: The series, Contemporary Perspectives on Data Mining, is composed of blind refereed scholarly research methods and applications of data mining. This series will be targeted both at the academic community, as well as the business practitioner. Data mining seeks to discover knowledge from vast amounts of data with the use of statistical and mathematical techniques. The knowledge is extracted from this data by examining the patterns of the data, whether they be associations of groups or things, predictions, sequential relationships between time order events or natural groups. Data mining applications are in marketing (customer loyalty, identifying profitable customers, instore promotions, e-commerce populations); in business (teaching data mining, efficiency of the Chinese automobile industry, moderate asset allocation funds); and techniques (veterinary predictive models, data integrity in the cloud, irregular pattern detection in a mobility network and road safety modeling.)