Medical Computer Vision

Medical Computer Vision
Author :
Publisher : Springer
Total Pages : 235
Release :
ISBN-10 : 9783642184215
ISBN-13 : 3642184219
Rating : 4/5 (15 Downloads)

Book Synopsis Medical Computer Vision by : Bjoern Menze

Download or read book Medical Computer Vision written by Bjoern Menze and published by Springer. This book was released on 2011-02-02 with total page 235 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the thoroughly refereed post-workshop proceedings of the International Workshop on Medical Computer Vision, MCV 2010, held in Beijing, China, in September 2010 as a satellite event of the 13th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2010. The 10 revised full papers and 11 revised poster papers presented were carefully reviewed and selected from 38 initial submissions. The papers explore the use of modern image recognition technology in tasks such as semantic anatomy parsing, automatic segmentation and quantification, anomaly detection and categorization, data harvesting, semantic navigation and visualization, data organization and clustering, and general-purpose automatic understanding of medical images.

Computer Vision In Medical Imaging

Computer Vision In Medical Imaging
Author :
Publisher : World Scientific
Total Pages : 410
Release :
ISBN-10 : 9789814460958
ISBN-13 : 9814460958
Rating : 4/5 (58 Downloads)

Book Synopsis Computer Vision In Medical Imaging by : Chi Hau Chen

Download or read book Computer Vision In Medical Imaging written by Chi Hau Chen and published by World Scientific. This book was released on 2013-11-18 with total page 410 pages. Available in PDF, EPUB and Kindle. Book excerpt: The major progress in computer vision allows us to make extensive use of medical imaging data to provide us better diagnosis, treatment and predication of diseases. Computer vision can exploit texture, shape, contour and prior knowledge along with contextual information from image sequence and provide 3D and 4D information that helps with better human understanding. Many powerful tools have been available through image segmentation, machine learning, pattern classification, tracking, reconstruction to bring much needed quantitative information not easily available by trained human specialists. The aim of the book is for both medical imaging professionals to acquire and interpret the data, and computer vision professionals to provide enhanced medical information by using computer vision techniques. The final objective is to benefit the patients without adding to the already high medical costs.

Advanced Machine Vision Paradigms for Medical Image Analysis

Advanced Machine Vision Paradigms for Medical Image Analysis
Author :
Publisher : Academic Press
Total Pages : 310
Release :
ISBN-10 : 9780128192962
ISBN-13 : 0128192968
Rating : 4/5 (62 Downloads)

Book Synopsis Advanced Machine Vision Paradigms for Medical Image Analysis by : Tapan K. Gandhi

Download or read book Advanced Machine Vision Paradigms for Medical Image Analysis written by Tapan K. Gandhi and published by Academic Press. This book was released on 2020-08-11 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computer vision and machine intelligence paradigms are prominent in the domain of medical image applications, including computer assisted diagnosis, image guided radiation therapy, landmark detection, imaging genomics, and brain connectomics. Medical image analysis and understanding are daunting tasks owing to the massive influx of multi-modal medical image data generated during routine clinal practice. Advanced computer vision and machine intelligence approaches have been employed in recent years in the field of image processing and computer vision. However, due to the unstructured nature of medical imaging data and the volume of data produced during routine clinical processes, the applicability of these meta-heuristic algorithms remains to be investigated. Advanced Machine Vision Paradigms for Medical Image Analysis presents an overview of how medical imaging data can be analyzed to provide better diagnosis and treatment of disease. Computer vision techniques can explore texture, shape, contour and prior knowledge along with contextual information, from image sequence and 3D/4D information which helps with better human understanding. Many powerful tools have been developed through image segmentation, machine learning, pattern classification, tracking, and reconstruction to surface much needed quantitative information not easily available through the analysis of trained human specialists. The aim of the book is for medical imaging professionals to acquire and interpret the data, and for computer vision professionals to learn how to provide enhanced medical information by using computer vision techniques. The ultimate objective is to benefit patients without adding to already high healthcare costs. - Explores major emerging trends in technology which are supporting the current advancement of medical image analysis with the help of computational intelligence - Highlights the advancement of conventional approaches in the field of medical image processing - Investigates novel techniques and reviews the state-of-the-art in the areas of machine learning, computer vision, soft computing techniques, as well as their applications in medical image analysis

Decision Forests for Computer Vision and Medical Image Analysis

Decision Forests for Computer Vision and Medical Image Analysis
Author :
Publisher : Springer Science & Business Media
Total Pages : 367
Release :
ISBN-10 : 9781447149293
ISBN-13 : 1447149297
Rating : 4/5 (93 Downloads)

Book Synopsis Decision Forests for Computer Vision and Medical Image Analysis by : Antonio Criminisi

Download or read book Decision Forests for Computer Vision and Medical Image Analysis written by Antonio Criminisi and published by Springer Science & Business Media. This book was released on 2013-01-30 with total page 367 pages. Available in PDF, EPUB and Kindle. Book excerpt: This practical and easy-to-follow text explores the theoretical underpinnings of decision forests, organizing the vast existing literature on the field within a new, general-purpose forest model. Topics and features: with a foreword by Prof. Y. Amit and Prof. D. Geman, recounting their participation in the development of decision forests; introduces a flexible decision forest model, capable of addressing a large and diverse set of image and video analysis tasks; investigates both the theoretical foundations and the practical implementation of decision forests; discusses the use of decision forests for such tasks as classification, regression, density estimation, manifold learning, active learning and semi-supervised classification; includes exercises and experiments throughout the text, with solutions, slides, demo videos and other supplementary material provided at an associated website; provides a free, user-friendly software library, enabling the reader to experiment with forests in a hands-on manner.

Machine Learning and Medical Imaging

Machine Learning and Medical Imaging
Author :
Publisher : Academic Press
Total Pages : 514
Release :
ISBN-10 : 9780128041147
ISBN-13 : 0128041145
Rating : 4/5 (47 Downloads)

Book Synopsis Machine Learning and Medical Imaging by : Guorong Wu

Download or read book Machine Learning and Medical Imaging written by Guorong Wu and published by Academic Press. This book was released on 2016-08-11 with total page 514 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine Learning and Medical Imaging presents state-of- the-art machine learning methods in medical image analysis. It first summarizes cutting-edge machine learning algorithms in medical imaging, including not only classical probabilistic modeling and learning methods, but also recent breakthroughs in deep learning, sparse representation/coding, and big data hashing. In the second part leading research groups around the world present a wide spectrum of machine learning methods with application to different medical imaging modalities, clinical domains, and organs. The biomedical imaging modalities include ultrasound, magnetic resonance imaging (MRI), computed tomography (CT), histology, and microscopy images. The targeted organs span the lung, liver, brain, and prostate, while there is also a treatment of examining genetic associations. Machine Learning and Medical Imaging is an ideal reference for medical imaging researchers, industry scientists and engineers, advanced undergraduate and graduate students, and clinicians. - Demonstrates the application of cutting-edge machine learning techniques to medical imaging problems - Covers an array of medical imaging applications including computer assisted diagnosis, image guided radiation therapy, landmark detection, imaging genomics, and brain connectomics - Features self-contained chapters with a thorough literature review - Assesses the development of future machine learning techniques and the further application of existing techniques

Computer Vision for Assistive Healthcare

Computer Vision for Assistive Healthcare
Author :
Publisher : Academic Press
Total Pages : 398
Release :
ISBN-10 : 9780128134467
ISBN-13 : 0128134461
Rating : 4/5 (67 Downloads)

Book Synopsis Computer Vision for Assistive Healthcare by : Leo Marco

Download or read book Computer Vision for Assistive Healthcare written by Leo Marco and published by Academic Press. This book was released on 2018-05-15 with total page 398 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computer Vision for Assistive Healthcare describes how advanced computer vision techniques provide tools to support common human needs, such as mental functioning, personal mobility, sensory functions, daily living activities, image processing, pattern recognition, machine learning and how language processing and computer graphics cooperate with robotics to provide such tools. Users will learn about the emerging computer vision techniques for supporting mental functioning, algorithms for analyzing human behavior, and how smart interfaces and virtual reality tools lead to the development of advanced rehabilitation systems able to perform human action and activity recognition. In addition, the book covers the technology behind intelligent wheelchairs, how computer vision technologies have the potential to assist blind people, and about the computer vision-based solutions recently employed for safety and health monitoring. - Gives the state-of-the-art computer vision techniques and tools for assistive healthcare - Includes a broad range of topic areas, ranging from image processing, pattern recognition, machine learning to robotics, natural language processing and computer graphics - Presents a wide range of application areas, ranging from mobility, sensory substitution, and safety and security, to mental and physical rehabilitation and training - Written by leading researchers in this growing field of research - Describes the outstanding research challenges that still need to be tackled, giving researchers good indicators of research opportunities

Medical Imaging

Medical Imaging
Author :
Publisher : CRC Press
Total Pages : 251
Release :
ISBN-10 : 9780429642494
ISBN-13 : 0429642490
Rating : 4/5 (94 Downloads)

Book Synopsis Medical Imaging by : K.C. Santosh

Download or read book Medical Imaging written by K.C. Santosh and published by CRC Press. This book was released on 2019-08-20 with total page 251 pages. Available in PDF, EPUB and Kindle. Book excerpt: Winner of the "Outstanding Academic Title" recognition by Choice for the 2020 OAT Awards. The Choice OAT Award represents the highest caliber of scholarly titles that have been reviewed by Choice and conveys the extraordinary recognition of the academic community. The book discusses varied topics pertaining to advanced or up-to-date techniques in medical imaging using artificial intelligence (AI), image recognition (IR) and machine learning (ML) algorithms/techniques. Further, coverage includes analysis of chest radiographs (chest x-rays) via stacked generalization models, TB type detection using slice separation approach, brain tumor image segmentation via deep learning, mammogram mass separation, epileptic seizures, breast ultrasound images, knee joint x-ray images, bone fracture detection and labeling, and diabetic retinopathy. It also reviews 3D imaging in biomedical applications and pathological medical imaging.