Measure, Integral and Probability

Measure, Integral and Probability
Author :
Publisher : Springer Science & Business Media
Total Pages : 229
Release :
ISBN-10 : 9781447136316
ISBN-13 : 1447136314
Rating : 4/5 (16 Downloads)

Book Synopsis Measure, Integral and Probability by : Marek Capinski

Download or read book Measure, Integral and Probability written by Marek Capinski and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 229 pages. Available in PDF, EPUB and Kindle. Book excerpt: This very well written and accessible book emphasizes the reasons for studying measure theory, which is the foundation of much of probability. By focusing on measure, many illustrative examples and applications, including a thorough discussion of standard probability distributions and densities, are opened. The book also includes many problems and their fully worked solutions.

Integration, Measure and Probability

Integration, Measure and Probability
Author :
Publisher : Courier Corporation
Total Pages : 130
Release :
ISBN-10 : 9780486488158
ISBN-13 : 0486488152
Rating : 4/5 (58 Downloads)

Book Synopsis Integration, Measure and Probability by : H. R. Pitt

Download or read book Integration, Measure and Probability written by H. R. Pitt and published by Courier Corporation. This book was released on 2012-01-01 with total page 130 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introductory treatment develops the theory of integration in a general context, making it applicable to other branches of analysis. More specialized topics include convergence theorems and random sequences and functions. 1963 edition.

Measure, Integration and a Primer on Probability Theory

Measure, Integration and a Primer on Probability Theory
Author :
Publisher : Springer Nature
Total Pages : 458
Release :
ISBN-10 : 9783030549404
ISBN-13 : 3030549402
Rating : 4/5 (04 Downloads)

Book Synopsis Measure, Integration and a Primer on Probability Theory by : Stefano Gentili

Download or read book Measure, Integration and a Primer on Probability Theory written by Stefano Gentili and published by Springer Nature. This book was released on 2020-11-30 with total page 458 pages. Available in PDF, EPUB and Kindle. Book excerpt: The text contains detailed and complete proofs and includes instructive historical introductions to key chapters. These serve to illustrate the hurdles faced by the scholars that developed the theory, and allow the novice to approach the subject from a wider angle, thus appreciating the human side of major figures in Mathematics. The style in which topics are addressed, albeit informal, always maintains a rigorous character. The attention placed in the careful layout of the logical steps of proofs, the abundant examples and the supplementary remarks disseminated throughout all contribute to render the reading pleasant and facilitate the learning process. The exposition is particularly suitable for students of Mathematics, Physics, Engineering and Statistics, besides providing the foundation essential for the study of Probability Theory and many branches of Applied Mathematics, including the Analysis of Financial Markets and other areas of Financial Engineering.

Measure, Integral, Probability & Processes

Measure, Integral, Probability & Processes
Author :
Publisher :
Total Pages : 450
Release :
ISBN-10 : 9798599104889
ISBN-13 :
Rating : 4/5 (89 Downloads)

Book Synopsis Measure, Integral, Probability & Processes by : René L Schilling

Download or read book Measure, Integral, Probability & Processes written by René L Schilling and published by . This book was released on 2021-02-02 with total page 450 pages. Available in PDF, EPUB and Kindle. Book excerpt: In these lecture notes we give a self-contained and concise introduction to the essentials of modern probability theory. The material covers all concepts and techniques usually taught at BSc and first-year graduate level probability courses: Measure & integration theory, elementary probability theory, further probability, classic limit theorems, discrete-time and continuous-time martingales, Poisson processes, random walks & Markov chains and, finally, first steps towards Brownian motion. The text can serve as a course companion, for self study or as a reference text. Concepts, which will be useful for later chapters and further studies are introduced early on. The material is organized and presented in a way that will enable the readers to continue their study with any advanced text in probability theory, stochastic processes or stochastic analysis. Much emphasis is put on being reader-friendly and useful, giving a direct and quick start into a fascinating mathematical topic.

Integration and Probability

Integration and Probability
Author :
Publisher : Springer Science & Business Media
Total Pages : 341
Release :
ISBN-10 : 9781461242024
ISBN-13 : 1461242029
Rating : 4/5 (24 Downloads)

Book Synopsis Integration and Probability by : Paul Malliavin

Download or read book Integration and Probability written by Paul Malliavin and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 341 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to analysis with the right mix of abstract theories and concrete problems. Starting with general measure theory, the book goes on to treat Borel and Radon measures and introduces the reader to Fourier analysis in Euclidean spaces with a treatment of Sobolev spaces, distributions, and the corresponding Fourier analysis. It continues with a Hilbertian treatment of the basic laws of probability including Doob's martingale convergence theorem and finishes with Malliavin's "stochastic calculus of variations" developed in the context of Gaussian measure spaces. This invaluable contribution gives a taste of the fact that analysis is not a collection of independent theories, but can be treated as a whole.

Measure, Integration & Real Analysis

Measure, Integration & Real Analysis
Author :
Publisher : Springer Nature
Total Pages : 430
Release :
ISBN-10 : 9783030331436
ISBN-13 : 3030331431
Rating : 4/5 (36 Downloads)

Book Synopsis Measure, Integration & Real Analysis by : Sheldon Axler

Download or read book Measure, Integration & Real Analysis written by Sheldon Axler and published by Springer Nature. This book was released on 2019-11-29 with total page 430 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access textbook welcomes students into the fundamental theory of measure, integration, and real analysis. Focusing on an accessible approach, Axler lays the foundations for further study by promoting a deep understanding of key results. Content is carefully curated to suit a single course, or two-semester sequence of courses, creating a versatile entry point for graduate studies in all areas of pure and applied mathematics. Motivated by a brief review of Riemann integration and its deficiencies, the text begins by immersing students in the concepts of measure and integration. Lebesgue measure and abstract measures are developed together, with each providing key insight into the main ideas of the other approach. Lebesgue integration links into results such as the Lebesgue Differentiation Theorem. The development of products of abstract measures leads to Lebesgue measure on Rn. Chapters on Banach spaces, Lp spaces, and Hilbert spaces showcase major results such as the Hahn–Banach Theorem, Hölder’s Inequality, and the Riesz Representation Theorem. An in-depth study of linear maps on Hilbert spaces culminates in the Spectral Theorem and Singular Value Decomposition for compact operators, with an optional interlude in real and complex measures. Building on the Hilbert space material, a chapter on Fourier analysis provides an invaluable introduction to Fourier series and the Fourier transform. The final chapter offers a taste of probability. Extensively class tested at multiple universities and written by an award-winning mathematical expositor, Measure, Integration & Real Analysis is an ideal resource for students at the start of their journey into graduate mathematics. A prerequisite of elementary undergraduate real analysis is assumed; students and instructors looking to reinforce these ideas will appreciate the electronic Supplement for Measure, Integration & Real Analysis that is freely available online. For errata and updates, visit https://measure.axler.net/

MEASURE THEORY AND PROBABILITY, Second Edition

MEASURE THEORY AND PROBABILITY, Second Edition
Author :
Publisher : PHI Learning Pvt. Ltd.
Total Pages : 233
Release :
ISBN-10 : 9788120343856
ISBN-13 : 8120343859
Rating : 4/5 (56 Downloads)

Book Synopsis MEASURE THEORY AND PROBABILITY, Second Edition by : BASU, A. K.

Download or read book MEASURE THEORY AND PROBABILITY, Second Edition written by BASU, A. K. and published by PHI Learning Pvt. Ltd.. This book was released on 2012-04-21 with total page 233 pages. Available in PDF, EPUB and Kindle. Book excerpt: This compact and well-received book, now in its second edition, is a skilful combination of measure theory and probability. For, in contrast to many books where probability theory is usually developed after a thorough exposure to the theory and techniques of measure and integration, this text develops the Lebesgue theory of measure and integration, using probability theory as the motivating force. What distinguishes the text is the illustration of all theorems by examples and applications. A section on Stieltjes integration assists the student in understanding the later text better. For easy understanding and presentation, this edition has split some long chapters into smaller ones. For example, old Chapter 3 has been split into Chapters 3 and 9, and old Chapter 11 has been split into Chapters 11, 12 and 13. The book is intended for the first-year postgraduate students for their courses in Statistics and Mathematics (pure and applied), computer science, and electrical and industrial engineering. KEY FEATURES : Measure theory and probability are well integrated. Exercises are given at the end of each chapter, with solutions provided separately. A section is devoted to large sample theory of statistics, and another to large deviation theory (in the Appendix).