Matrices for Statistics

Matrices for Statistics
Author :
Publisher : Oxford University Press
Total Pages : 164
Release :
ISBN-10 : 019850702X
ISBN-13 : 9780198507024
Rating : 4/5 (2X Downloads)

Book Synopsis Matrices for Statistics by : M. J. R. Healy

Download or read book Matrices for Statistics written by M. J. R. Healy and published by Oxford University Press. This book was released on 2000 with total page 164 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook provides a concise introduction to the basis of matrix theory. The text of the first edition has been re-written and revised to take account of recent developments in statistical practice. The more difficult topics have been expanded and the mathematical explanations have been simplified. A new chapter has been included, at readers' request, to cover such topics as vectorising, matrix calculus and complex numbers.

Linear Algebra and Matrix Analysis for Statistics

Linear Algebra and Matrix Analysis for Statistics
Author :
Publisher : CRC Press
Total Pages : 586
Release :
ISBN-10 : 9781420095388
ISBN-13 : 1420095382
Rating : 4/5 (88 Downloads)

Book Synopsis Linear Algebra and Matrix Analysis for Statistics by : Sudipto Banerjee

Download or read book Linear Algebra and Matrix Analysis for Statistics written by Sudipto Banerjee and published by CRC Press. This book was released on 2014-06-06 with total page 586 pages. Available in PDF, EPUB and Kindle. Book excerpt: Linear Algebra and Matrix Analysis for Statistics offers a gradual exposition to linear algebra without sacrificing the rigor of the subject. It presents both the vector space approach and the canonical forms in matrix theory. The book is as self-contained as possible, assuming no prior knowledge of linear algebra. The authors first address the rudimentary mechanics of linear systems using Gaussian elimination and the resulting decompositions. They introduce Euclidean vector spaces using less abstract concepts and make connections to systems of linear equations wherever possible. After illustrating the importance of the rank of a matrix, they discuss complementary subspaces, oblique projectors, orthogonality, orthogonal projections and projectors, and orthogonal reduction. The text then shows how the theoretical concepts developed are handy in analyzing solutions for linear systems. The authors also explain how determinants are useful for characterizing and deriving properties concerning matrices and linear systems. They then cover eigenvalues, eigenvectors, singular value decomposition, Jordan decomposition (including a proof), quadratic forms, and Kronecker and Hadamard products. The book concludes with accessible treatments of advanced topics, such as linear iterative systems, convergence of matrices, more general vector spaces, linear transformations, and Hilbert spaces.

Basics of Matrix Algebra for Statistics with R

Basics of Matrix Algebra for Statistics with R
Author :
Publisher : CRC Press
Total Pages : 208
Release :
ISBN-10 : 9781315360058
ISBN-13 : 1315360055
Rating : 4/5 (58 Downloads)

Book Synopsis Basics of Matrix Algebra for Statistics with R by : Nick Fieller

Download or read book Basics of Matrix Algebra for Statistics with R written by Nick Fieller and published by CRC Press. This book was released on 2018-09-03 with total page 208 pages. Available in PDF, EPUB and Kindle. Book excerpt: A Thorough Guide to Elementary Matrix Algebra and Implementation in R Basics of Matrix Algebra for Statistics with R provides a guide to elementary matrix algebra sufficient for undertaking specialized courses, such as multivariate data analysis and linear models. It also covers advanced topics, such as generalized inverses of singular and rectangular matrices and manipulation of partitioned matrices, for those who want to delve deeper into the subject. The book introduces the definition of a matrix and the basic rules of addition, subtraction, multiplication, and inversion. Later topics include determinants, calculation of eigenvectors and eigenvalues, and differentiation of linear and quadratic forms with respect to vectors. The text explores how these concepts arise in statistical techniques, including principal component analysis, canonical correlation analysis, and linear modeling. In addition to the algebraic manipulation of matrices, the book presents numerical examples that illustrate how to perform calculations by hand and using R. Many theoretical and numerical exercises of varying levels of difficulty aid readers in assessing their knowledge of the material. Outline solutions at the back of the book enable readers to verify the techniques required and obtain numerical answers. Avoiding vector spaces and other advanced mathematics, this book shows how to manipulate matrices and perform numerical calculations in R. It prepares readers for higher-level and specialized studies in statistics.

Matrix Analysis for Statistics

Matrix Analysis for Statistics
Author :
Publisher : John Wiley & Sons
Total Pages : 547
Release :
ISBN-10 : 9781119092483
ISBN-13 : 1119092485
Rating : 4/5 (83 Downloads)

Book Synopsis Matrix Analysis for Statistics by : James R. Schott

Download or read book Matrix Analysis for Statistics written by James R. Schott and published by John Wiley & Sons. This book was released on 2016-06-20 with total page 547 pages. Available in PDF, EPUB and Kindle. Book excerpt: An up-to-date version of the complete, self-contained introduction to matrix analysis theory and practice Providing accessible and in-depth coverage of the most common matrix methods now used in statistical applications, Matrix Analysis for Statistics, Third Edition features an easy-to-follow theorem/proof format. Featuring smooth transitions between topical coverage, the author carefully justifies the step-by-step process of the most common matrix methods now used in statistical applications, including eigenvalues and eigenvectors; the Moore-Penrose inverse; matrix differentiation; and the distribution of quadratic forms. An ideal introduction to matrix analysis theory and practice, Matrix Analysis for Statistics, Third Edition features: • New chapter or section coverage on inequalities, oblique projections, and antieigenvalues and antieigenvectors • Additional problems and chapter-end practice exercises at the end of each chapter • Extensive examples that are familiar and easy to understand • Self-contained chapters for flexibility in topic choice • Applications of matrix methods in least squares regression and the analyses of mean vectors and covariance matrices Matrix Analysis for Statistics, Third Edition is an ideal textbook for upper-undergraduate and graduate-level courses on matrix methods, multivariate analysis, and linear models. The book is also an excellent reference for research professionals in applied statistics. James R. Schott, PhD, is Professor in the Department of Statistics at the University of Central Florida. He has published numerous journal articles in the area of multivariate analysis. Dr. Schott’s research interests include multivariate analysis, analysis of covariance and correlation matrices, and dimensionality reduction techniques.

Matrix Algebra Useful for Statistics

Matrix Algebra Useful for Statistics
Author :
Publisher : John Wiley & Sons
Total Pages : 517
Release :
ISBN-10 : 9781118935149
ISBN-13 : 1118935144
Rating : 4/5 (49 Downloads)

Book Synopsis Matrix Algebra Useful for Statistics by : Shayle R. Searle

Download or read book Matrix Algebra Useful for Statistics written by Shayle R. Searle and published by John Wiley & Sons. This book was released on 2017-05-01 with total page 517 pages. Available in PDF, EPUB and Kindle. Book excerpt: A thoroughly updated guide to matrix algebra and it uses in statistical analysis and features SAS®, MATLAB®, and R throughout This Second Edition addresses matrix algebra that is useful in the statistical analysis of data as well as within statistics as a whole. The material is presented in an explanatory style rather than a formal theorem-proof format and is self-contained. Featuring numerous applied illustrations, numerical examples, and exercises, the book has been updated to include the use of SAS, MATLAB, and R for the execution of matrix computations. In addition, André I. Khuri, who has extensive research and teaching experience in the field, joins this new edition as co-author. The Second Edition also: Contains new coverage on vector spaces and linear transformations and discusses computational aspects of matrices Covers the analysis of balanced linear models using direct products of matrices Analyzes multiresponse linear models where several responses can be of interest Includes extensive use of SAS, MATLAB, and R throughout Contains over 400 examples and exercises to reinforce understanding along with select solutions Includes plentiful new illustrations depicting the importance of geometry as well as historical interludes Matrix Algebra Useful for Statistics, Second Edition is an ideal textbook for advanced undergraduate and first-year graduate level courses in statistics and other related disciplines. The book is also appropriate as a reference for independent readers who use statistics and wish to improve their knowledge of matrix algebra. THE LATE SHAYLE R. SEARLE, PHD, was professor emeritus of biometry at Cornell University. He was the author of Linear Models for Unbalanced Data and Linear Models and co-author of Generalized, Linear, and Mixed Models, Second Edition, Matrix Algebra for Applied Economics, and Variance Components, all published by Wiley. Dr. Searle received the Alexander von Humboldt Senior Scientist Award, and he was an honorary fellow of the Royal Society of New Zealand. ANDRÉ I. KHURI, PHD, is Professor Emeritus of Statistics at the University of Florida. He is the author of Advanced Calculus with Applications in Statistics, Second Edition and co-author of Statistical Tests for Mixed Linear Models, all published by Wiley. Dr. Khuri is a member of numerous academic associations, among them the American Statistical Association and the Institute of Mathematical Statistics.

Matrix Algebra

Matrix Algebra
Author :
Publisher : Springer Science & Business Media
Total Pages : 536
Release :
ISBN-10 : 9780387708720
ISBN-13 : 0387708723
Rating : 4/5 (20 Downloads)

Book Synopsis Matrix Algebra by : James E. Gentle

Download or read book Matrix Algebra written by James E. Gentle and published by Springer Science & Business Media. This book was released on 2007-07-27 with total page 536 pages. Available in PDF, EPUB and Kindle. Book excerpt: Matrix algebra is one of the most important areas of mathematics for data analysis and for statistical theory. This much-needed work presents the relevant aspects of the theory of matrix algebra for applications in statistics. It moves on to consider the various types of matrices encountered in statistics, such as projection matrices and positive definite matrices, and describes the special properties of those matrices. Finally, it covers numerical linear algebra, beginning with a discussion of the basics of numerical computations, and following up with accurate and efficient algorithms for factoring matrices, solving linear systems of equations, and extracting eigenvalues and eigenvectors.

Matrix Algebra and Its Applications to Statistics and Econometrics

Matrix Algebra and Its Applications to Statistics and Econometrics
Author :
Publisher : World Scientific
Total Pages : 560
Release :
ISBN-10 : 9810232683
ISBN-13 : 9789810232689
Rating : 4/5 (83 Downloads)

Book Synopsis Matrix Algebra and Its Applications to Statistics and Econometrics by : Calyampudi Radhakrishna Rao

Download or read book Matrix Algebra and Its Applications to Statistics and Econometrics written by Calyampudi Radhakrishna Rao and published by World Scientific. This book was released on 1998 with total page 560 pages. Available in PDF, EPUB and Kindle. Book excerpt: "I recommend this book for its extensive coverage of topics not easily found elsewhere and for its focus on applications".Zentralblatt MATH"The book is an excellent source on linear algebra, matrix theory and applications in statistics and econometrics, and is unique in many ways. I recommend it to anyone interested in these disciplines, and especially in how they benefit from one another".Statistical Papers, 2000