Mastering Parallel Programming with R

Mastering Parallel Programming with R
Author :
Publisher : Packt Publishing Ltd
Total Pages : 244
Release :
ISBN-10 : 9781784394622
ISBN-13 : 1784394629
Rating : 4/5 (22 Downloads)

Book Synopsis Mastering Parallel Programming with R by : Simon R. Chapple

Download or read book Mastering Parallel Programming with R written by Simon R. Chapple and published by Packt Publishing Ltd. This book was released on 2016-05-31 with total page 244 pages. Available in PDF, EPUB and Kindle. Book excerpt: Master the robust features of R parallel programming to accelerate your data science computations About This Book Create R programs that exploit the computational capability of your cloud platforms and computers to the fullest Become an expert in writing the most efficient and highest performance parallel algorithms in R Get to grips with the concept of parallelism to accelerate your existing R programs Who This Book Is For This book is for R programmers who want to step beyond its inherent single-threaded and restricted memory limitations and learn how to implement highly accelerated and scalable algorithms that are a necessity for the performant processing of Big Data. No previous knowledge of parallelism is required. This book also provides for the more advanced technical programmer seeking to go beyond high level parallel frameworks. What You Will Learn Create and structure efficient load-balanced parallel computation in R, using R's built-in parallel package Deploy and utilize cloud-based parallel infrastructure from R, including launching a distributed computation on Hadoop running on Amazon Web Services (AWS) Get accustomed to parallel efficiency, and apply simple techniques to benchmark, measure speed and target improvement in your own code Develop complex parallel processing algorithms with the standard Message Passing Interface (MPI) using RMPI, pbdMPI, and SPRINT packages Build and extend a parallel R package (SPRINT) with your own MPI-based routines Implement accelerated numerical functions in R utilizing the vector processing capability of your Graphics Processing Unit (GPU) with OpenCL Understand parallel programming pitfalls, such as deadlock and numerical instability, and the approaches to handle and avoid them Build a task farm master-worker, spatial grid, and hybrid parallel R programs In Detail R is one of the most popular programming languages used in data science. Applying R to big data and complex analytic tasks requires the harnessing of scalable compute resources. Mastering Parallel Programming with R presents a comprehensive and practical treatise on how to build highly scalable and efficient algorithms in R. It will teach you a variety of parallelization techniques, from simple use of R's built-in parallel package versions of lapply(), to high-level AWS cloud-based Hadoop and Apache Spark frameworks. It will also teach you low level scalable parallel programming using RMPI and pbdMPI for message passing, applicable to clusters and supercomputers, and how to exploit thousand-fold simple processor GPUs through ROpenCL. By the end of the book, you will understand the factors that influence parallel efficiency, including assessing code performance and implementing load balancing; pitfalls to avoid, including deadlock and numerical instability issues; how to structure your code and data for the most appropriate type of parallelism for your problem domain; and how to extract the maximum performance from your R code running on a variety of computer systems. Style and approach This book leads you chapter by chapter from the easy to more complex forms of parallelism. The author's insights are presented through clear practical examples applied to a range of different problems, with comprehensive reference information for each of the R packages employed. The book can be read from start to finish, or by dipping in chapter by chapter, as each chapter describes a specific parallel approach and technology, so can be read as a standalone.

Parallel R

Parallel R
Author :
Publisher : "O'Reilly Media, Inc."
Total Pages : 123
Release :
ISBN-10 : 9781449309923
ISBN-13 : 1449309925
Rating : 4/5 (23 Downloads)

Book Synopsis Parallel R by : Ethan McCallum

Download or read book Parallel R written by Ethan McCallum and published by "O'Reilly Media, Inc.". This book was released on 2011-10-28 with total page 123 pages. Available in PDF, EPUB and Kindle. Book excerpt: R is a wonderful thing, indeed: in recent years this free, open-source product has become a popular toolkit for statistical analysis and programming. Two of R's limitations -- that it is single-threaded and memory-bound -- become especially troublesome in the current era of large-scale data analysis. It's possible to break past these boundaries by putting R on the parallel path. Parallel R will describe how to give R parallel muscle. Coverage will include stalwarts such as snow and multicore, and also newer techniques such as Hadoop and Amazon's cloud computing platform.

Mastering Scientific Computing with R

Mastering Scientific Computing with R
Author :
Publisher : Packt Publishing Ltd
Total Pages : 432
Release :
ISBN-10 : 9781783555260
ISBN-13 : 1783555262
Rating : 4/5 (60 Downloads)

Book Synopsis Mastering Scientific Computing with R by : Paul Gerrard

Download or read book Mastering Scientific Computing with R written by Paul Gerrard and published by Packt Publishing Ltd. This book was released on 2015-01-31 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt: If you want to learn how to quantitatively answer scientific questions for practical purposes using the powerful R language and the open source R tool ecosystem, this book is ideal for you. It is ideally suited for scientists who understand scientific concepts, know a little R, and want to be able to start applying R to be able to answer empirical scientific questions. Some R exposure is helpful, but not compulsory.

The Art of R Programming

The Art of R Programming
Author :
Publisher : No Starch Press
Total Pages : 404
Release :
ISBN-10 : 9781593273842
ISBN-13 : 1593273843
Rating : 4/5 (42 Downloads)

Book Synopsis The Art of R Programming by : Norman Matloff

Download or read book The Art of R Programming written by Norman Matloff and published by No Starch Press. This book was released on 2011-10-11 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: R is the world's most popular language for developing statistical software: Archaeologists use it to track the spread of ancient civilizations, drug companies use it to discover which medications are safe and effective, and actuaries use it to assess financial risks and keep economies running smoothly. The Art of R Programming takes you on a guided tour of software development with R, from basic types and data structures to advanced topics like closures, recursion, and anonymous functions. No statistical knowledge is required, and your programming skills can range from hobbyist to pro. Along the way, you'll learn about functional and object-oriented programming, running mathematical simulations, and rearranging complex data into simpler, more useful formats. You'll also learn to: –Create artful graphs to visualize complex data sets and functions –Write more efficient code using parallel R and vectorization –Interface R with C/C++ and Python for increased speed or functionality –Find new R packages for text analysis, image manipulation, and more –Squash annoying bugs with advanced debugging techniques Whether you're designing aircraft, forecasting the weather, or you just need to tame your data, The Art of R Programming is your guide to harnessing the power of statistical computing.

Data Parallel C++

Data Parallel C++
Author :
Publisher : Apress
Total Pages : 548
Release :
ISBN-10 : 1484255739
ISBN-13 : 9781484255735
Rating : 4/5 (39 Downloads)

Book Synopsis Data Parallel C++ by : James Reinders

Download or read book Data Parallel C++ written by James Reinders and published by Apress. This book was released on 2020-11-19 with total page 548 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn how to accelerate C++ programs using data parallelism. This open access book enables C++ programmers to be at the forefront of this exciting and important new development that is helping to push computing to new levels. It is full of practical advice, detailed explanations, and code examples to illustrate key topics. Data parallelism in C++ enables access to parallel resources in a modern heterogeneous system, freeing you from being locked into any particular computing device. Now a single C++ application can use any combination of devices—including GPUs, CPUs, FPGAs and AI ASICs—that are suitable to the problems at hand. This book begins by introducing data parallelism and foundational topics for effective use of the SYCL standard from the Khronos Group and Data Parallel C++ (DPC++), the open source compiler used in this book. Later chapters cover advanced topics including error handling, hardware-specific programming, communication and synchronization, and memory model considerations. Data Parallel C++ provides you with everything needed to use SYCL for programming heterogeneous systems. What You'll Learn Accelerate C++ programs using data-parallel programming Target multiple device types (e.g. CPU, GPU, FPGA) Use SYCL and SYCL compilers Connect with computing’s heterogeneous future via Intel’s oneAPI initiative Who This Book Is For Those new data-parallel programming and computer programmers interested in data-parallel programming using C++.

Mastering Functional Programming

Mastering Functional Programming
Author :
Publisher : Packt Publishing Ltd
Total Pages : 372
Release :
ISBN-10 : 9781788626033
ISBN-13 : 1788626036
Rating : 4/5 (33 Downloads)

Book Synopsis Mastering Functional Programming by : Anatolii Kmetiuk

Download or read book Mastering Functional Programming written by Anatolii Kmetiuk and published by Packt Publishing Ltd. This book was released on 2018-08-31 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn how functional programming can help you in deploying web servers and working with databases in a declarative and pure way Key Features Learn functional programming from scratch Program applications with side effects in a pure way Gain expertise in working with array tools for functional programming Book Description In large projects, it can get difficult keeping track of all the interdependencies of the code base and how its state changes at runtime. Functional Programming helps us solve these problems. It is a paradigm specifically designed to deal with the complexity of software development. This book will show you how the right abstractions can reduce complexity and make your code easy to read and understand. Mastering Functional Programming begins by touching upon the basics such as what lambdas are and how to write declarative code with the help of functions. It then moves on to more advanced concepts such as pure functions and type classes, the problems they aim to solve, and how to use them in real-world scenarios. You will also explore some of the more advanced patterns in the world of functional programming, such as monad transformers and Tagless Final. In the concluding chapters, you will be introduced to the actor model, implement it in modern functional languages, and explore the subject of parallel programming. By the end of the book, you will have mastered the concepts entailing functional programming along with object-oriented programming (OOP) to build robust applications. What you will learn Write reliable and scalable software based on solid foundations Explore the cutting edge of computer science research Effectively solve complex architectural problems in a robust way Avoid unwanted outcomes such as errors or delays and focus on business logic Write parallel programs in a functional style using the actor model Use functional data structures and collections in your day-to-day work Who this book is for If you are from an imperative and OOP background, this book will guide you through the world of functional programming, irrespective of which programming language you use.

Parallel and High Performance Computing

Parallel and High Performance Computing
Author :
Publisher : Simon and Schuster
Total Pages : 702
Release :
ISBN-10 : 9781638350385
ISBN-13 : 1638350388
Rating : 4/5 (85 Downloads)

Book Synopsis Parallel and High Performance Computing by : Robert Robey

Download or read book Parallel and High Performance Computing written by Robert Robey and published by Simon and Schuster. This book was released on 2021-08-24 with total page 702 pages. Available in PDF, EPUB and Kindle. Book excerpt: Parallel and High Performance Computing offers techniques guaranteed to boost your code’s effectiveness. Summary Complex calculations, like training deep learning models or running large-scale simulations, can take an extremely long time. Efficient parallel programming can save hours—or even days—of computing time. Parallel and High Performance Computing shows you how to deliver faster run-times, greater scalability, and increased energy efficiency to your programs by mastering parallel techniques for multicore processor and GPU hardware. About the technology Write fast, powerful, energy efficient programs that scale to tackle huge volumes of data. Using parallel programming, your code spreads data processing tasks across multiple CPUs for radically better performance. With a little help, you can create software that maximizes both speed and efficiency. About the book Parallel and High Performance Computing offers techniques guaranteed to boost your code’s effectiveness. You’ll learn to evaluate hardware architectures and work with industry standard tools such as OpenMP and MPI. You’ll master the data structures and algorithms best suited for high performance computing and learn techniques that save energy on handheld devices. You’ll even run a massive tsunami simulation across a bank of GPUs. What's inside Planning a new parallel project Understanding differences in CPU and GPU architecture Addressing underperforming kernels and loops Managing applications with batch scheduling About the reader For experienced programmers proficient with a high-performance computing language like C, C++, or Fortran. About the author Robert Robey works at Los Alamos National Laboratory and has been active in the field of parallel computing for over 30 years. Yuliana Zamora is currently a PhD student and Siebel Scholar at the University of Chicago, and has lectured on programming modern hardware at numerous national conferences. Table of Contents PART 1 INTRODUCTION TO PARALLEL COMPUTING 1 Why parallel computing? 2 Planning for parallelization 3 Performance limits and profiling 4 Data design and performance models 5 Parallel algorithms and patterns PART 2 CPU: THE PARALLEL WORKHORSE 6 Vectorization: FLOPs for free 7 OpenMP that performs 8 MPI: The parallel backbone PART 3 GPUS: BUILT TO ACCELERATE 9 GPU architectures and concepts 10 GPU programming model 11 Directive-based GPU programming 12 GPU languages: Getting down to basics 13 GPU profiling and tools PART 4 HIGH PERFORMANCE COMPUTING ECOSYSTEMS 14 Affinity: Truce with the kernel 15 Batch schedulers: Bringing order to chaos 16 File operations for a parallel world 17 Tools and resources for better code