Machine Learning with Quantum Computers

Machine Learning with Quantum Computers
Author :
Publisher : Springer Nature
Total Pages : 321
Release :
ISBN-10 : 9783030830984
ISBN-13 : 3030830985
Rating : 4/5 (84 Downloads)

Book Synopsis Machine Learning with Quantum Computers by : Maria Schuld

Download or read book Machine Learning with Quantum Computers written by Maria Schuld and published by Springer Nature. This book was released on 2021-10-17 with total page 321 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers an introduction into quantum machine learning research, covering approaches that range from "near-term" to fault-tolerant quantum machine learning algorithms, and from theoretical to practical techniques that help us understand how quantum computers can learn from data. Among the topics discussed are parameterized quantum circuits, hybrid optimization, data encoding, quantum feature maps and kernel methods, quantum learning theory, as well as quantum neural networks. The book aims at an audience of computer scientists and physicists at the graduate level onwards. The second edition extends the material beyond supervised learning and puts a special focus on the developments in near-term quantum machine learning seen over the past few years.

Supervised Learning with Quantum Computers

Supervised Learning with Quantum Computers
Author :
Publisher : Springer
Total Pages : 293
Release :
ISBN-10 : 9783319964249
ISBN-13 : 3319964240
Rating : 4/5 (49 Downloads)

Book Synopsis Supervised Learning with Quantum Computers by : Maria Schuld

Download or read book Supervised Learning with Quantum Computers written by Maria Schuld and published by Springer. This book was released on 2018-08-30 with total page 293 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantum machine learning investigates how quantum computers can be used for data-driven prediction and decision making. The books summarises and conceptualises ideas of this relatively young discipline for an audience of computer scientists and physicists from a graduate level upwards. It aims at providing a starting point for those new to the field, showcasing a toy example of a quantum machine learning algorithm and providing a detailed introduction of the two parent disciplines. For more advanced readers, the book discusses topics such as data encoding into quantum states, quantum algorithms and routines for inference and optimisation, as well as the construction and analysis of genuine ``quantum learning models''. A special focus lies on supervised learning, and applications for near-term quantum devices.

Quantum Machine Learning

Quantum Machine Learning
Author :
Publisher : Academic Press
Total Pages : 176
Release :
ISBN-10 : 9780128010990
ISBN-13 : 0128010991
Rating : 4/5 (90 Downloads)

Book Synopsis Quantum Machine Learning by : Peter Wittek

Download or read book Quantum Machine Learning written by Peter Wittek and published by Academic Press. This book was released on 2014-09-10 with total page 176 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantum Machine Learning bridges the gap between abstract developments in quantum computing and the applied research on machine learning. Paring down the complexity of the disciplines involved, it focuses on providing a synthesis that explains the most important machine learning algorithms in a quantum framework. Theoretical advances in quantum computing are hard to follow for computer scientists, and sometimes even for researchers involved in the field. The lack of a step-by-step guide hampers the broader understanding of this emergent interdisciplinary body of research. Quantum Machine Learning sets the scene for a deeper understanding of the subject for readers of different backgrounds. The author has carefully constructed a clear comparison of classical learning algorithms and their quantum counterparts, thus making differences in computational complexity and learning performance apparent. This book synthesizes of a broad array of research into a manageable and concise presentation, with practical examples and applications. - Bridges the gap between abstract developments in quantum computing with the applied research on machine learning - Provides the theoretical minimum of machine learning, quantum mechanics, and quantum computing - Gives step-by-step guidance to a broader understanding of this emergent interdisciplinary body of research

Hands-On Quantum Machine Learning With Python

Hands-On Quantum Machine Learning With Python
Author :
Publisher : Independently Published
Total Pages : 440
Release :
ISBN-10 : 9798516564499
ISBN-13 :
Rating : 4/5 (99 Downloads)

Book Synopsis Hands-On Quantum Machine Learning With Python by : Frank Zickert

Download or read book Hands-On Quantum Machine Learning With Python written by Frank Zickert and published by Independently Published. This book was released on 2021-06-19 with total page 440 pages. Available in PDF, EPUB and Kindle. Book excerpt: You're interested in quantum computing and machine learning. But you don't know how to get started? Let me help! Whether you just get started with quantum computing and machine learning or you're already a senior machine learning engineer, Hands-On Quantum Machine Learning With Python is your comprehensive guide to get started with Quantum Machine Learning - the use of quantum computing for the computation of machine learning algorithms. Quantum computing promises to solve problems intractable with current computing technologies. But is it fundamentally different and asks us to change the way we think. Hands-On Quantum Machine Learning With Python strives to be the perfect balance between theory taught in a textbook and the actual hands-on knowledge you'll need to implement real-world solutions. Inside this book, you will learn the basics of quantum computing and machine learning in a practical and applied manner.

Quantum Machine Learning With Python

Quantum Machine Learning With Python
Author :
Publisher : Apress
Total Pages : 295
Release :
ISBN-10 : 1484265211
ISBN-13 : 9781484265215
Rating : 4/5 (11 Downloads)

Book Synopsis Quantum Machine Learning With Python by : Santanu Pattanayak

Download or read book Quantum Machine Learning With Python written by Santanu Pattanayak and published by Apress. This book was released on 2021-03-29 with total page 295 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quickly scale up to Quantum computing and Quantum machine learning foundations and related mathematics and expose them to different use cases that can be solved through Quantum based algorithms.This book explains Quantum Computing, which leverages the Quantum mechanical properties sub-atomic particles. It also examines Quantum machine learning, which can help solve some of the most challenging problems in forecasting, financial modeling, genomics, cybersecurity, supply chain logistics, cryptography among others. You'll start by reviewing the fundamental concepts of Quantum Computing, such as Dirac Notations, Qubits, and Bell state, followed by postulates and mathematical foundations of Quantum Computing. Once the foundation base is set, you'll delve deep into Quantum based algorithms including Quantum Fourier transform, phase estimation, and HHL (Harrow-Hassidim-Lloyd) among others. You'll then be introduced to Quantum machine learning and Quantum deep learning-based algorithms, along with advanced topics of Quantum adiabatic processes and Quantum based optimization. Throughout the book, there are Python implementations of different Quantum machine learning and Quantum computing algorithms using the Qiskit toolkit from IBM and Cirq from Google Research. What You'll Learn Understand Quantum computing and Quantum machine learning Explore varied domains and the scenarios where Quantum machine learning solutions can be applied Develop expertise in algorithm development in varied Quantum computing frameworks Review the major challenges of building large scale Quantum computers and applying its various techniques Who This Book Is For Machine Learning enthusiasts and engineers who want to quickly scale up to Quantum Machine Learning

Quantum Machine Learning: An Applied Approach

Quantum Machine Learning: An Applied Approach
Author :
Publisher : Apress
Total Pages : 551
Release :
ISBN-10 : 1484270975
ISBN-13 : 9781484270974
Rating : 4/5 (75 Downloads)

Book Synopsis Quantum Machine Learning: An Applied Approach by : Santanu Ganguly

Download or read book Quantum Machine Learning: An Applied Approach written by Santanu Ganguly and published by Apress. This book was released on 2021-08-11 with total page 551 pages. Available in PDF, EPUB and Kindle. Book excerpt: Know how to adapt quantum computing and machine learning algorithms. This book takes you on a journey into hands-on quantum machine learning (QML) through various options available in industry and research. The first three chapters offer insights into the combination of the science of quantum mechanics and the techniques of machine learning, where concepts of classical information technology meet the power of physics. Subsequent chapters follow a systematic deep dive into various quantum machine learning algorithms, quantum optimization, applications of advanced QML algorithms (quantum k-means, quantum k-medians, quantum neural networks, etc.), qubit state preparation for specific QML algorithms, inference, polynomial Hamiltonian simulation, and more, finishing with advanced and up-to-date research areas such as quantum walks, QML via Tensor Networks, and QBoost. Hands-on exercises from open source libraries regularly used today in industry and research are included, such as Qiskit, Rigetti's Forest, D-Wave's dOcean, Google's Cirq and brand new TensorFlow Quantum, and Xanadu's PennyLane, accompanied by guided implementation instructions. Wherever applicable, the book also shares various options of accessing quantum computing and machine learning ecosystems as may be relevant to specific algorithms. The book offers a hands-on approach to the field of QML using updated libraries and algorithms in this emerging field. You will benefit from the concrete examples and understanding of tools and concepts for building intelligent systems boosted by the quantum computing ecosystem. This work leverages the author’s active research in the field and is accompanied by a constantly updated website for the book which provides all of the code examples. What You will Learn Understand and explore quantum computing and quantum machine learning, and their application in science and industry Explore various data training models utilizing quantum machine learning algorithms and Python libraries Get hands-on and familiar with applied quantum computing, including freely available cloud-based access Be familiar with techniques for training and scaling quantum neural networks Gain insight into the application of practical code examples without needing to acquire excessive machine learning theory or take a quantum mechanics deep dive Who This Book Is For Data scientists, machine learning professionals, and researchers

Quantum Computing: An Applied Approach

Quantum Computing: An Applied Approach
Author :
Publisher : Springer Nature
Total Pages : 422
Release :
ISBN-10 : 9783030832742
ISBN-13 : 3030832740
Rating : 4/5 (42 Downloads)

Book Synopsis Quantum Computing: An Applied Approach by : Jack D. Hidary

Download or read book Quantum Computing: An Applied Approach written by Jack D. Hidary and published by Springer Nature. This book was released on 2021-09-29 with total page 422 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book integrates the foundations of quantum computing with a hands-on coding approach to this emerging field; it is the first to bring these elements together in an updated manner. This work is suitable for both academic coursework and corporate technical training. The second edition includes extensive updates and revisions, both to textual content and to the code. Sections have been added on quantum machine learning, quantum error correction, Dirac notation and more. This new edition benefits from the input of the many faculty, students, corporate engineering teams, and independent readers who have used the first edition. This volume comprises three books under one cover: Part I outlines the necessary foundations of quantum computing and quantum circuits. Part II walks through the canon of quantum computing algorithms and provides code on a range of quantum computing methods in current use. Part III covers the mathematical toolkit required to master quantum computing. Additional resources include a table of operators and circuit elements and a companion GitHub site providing code and updates. Jack D. Hidary is a research scientist in quantum computing and in AI at Alphabet X, formerly Google X.