Long Short-term Memory Networks with Python

Long Short-term Memory Networks with Python
Author :
Publisher :
Total Pages : 229
Release :
ISBN-10 : OCLC:1007093607
ISBN-13 :
Rating : 4/5 (07 Downloads)

Book Synopsis Long Short-term Memory Networks with Python by : Jason Brownlee

Download or read book Long Short-term Memory Networks with Python written by Jason Brownlee and published by . This book was released on 2017 with total page 229 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Long Short-Term Memory network, or LSTM for short, is a type of recurrent neural network that achieves state-of-the-art results on challenging prediction problems. In this laser-focused Ebook written in the friendly Machine Learning Mastery style that you’re used to, finally cut through the math, research papers and patchwork descriptions about LSTMs. Using clear explanations, standard Python libraries and step-by-step tutorial lessons you will discover what LSTMs are, and how to develop a suite of LSTM models to get the most out of the method on your sequence prediction problems.

Long Short-Term Memory Networks With Python

Long Short-Term Memory Networks With Python
Author :
Publisher : Machine Learning Mastery
Total Pages : 245
Release :
ISBN-10 :
ISBN-13 :
Rating : 4/5 ( Downloads)

Book Synopsis Long Short-Term Memory Networks With Python by : Jason Brownlee

Download or read book Long Short-Term Memory Networks With Python written by Jason Brownlee and published by Machine Learning Mastery. This book was released on 2017-07-20 with total page 245 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Long Short-Term Memory network, or LSTM for short, is a type of recurrent neural network that achieves state-of-the-art results on challenging prediction problems. In this laser-focused Ebook, finally cut through the math, research papers and patchwork descriptions about LSTMs. Using clear explanations, standard Python libraries and step-by-step tutorial lessons you will discover what LSTMs are, and how to develop a suite of LSTM models to get the most out of the method on your sequence prediction problems.

Deep Learning for Time Series Forecasting

Deep Learning for Time Series Forecasting
Author :
Publisher : Machine Learning Mastery
Total Pages : 572
Release :
ISBN-10 :
ISBN-13 :
Rating : 4/5 ( Downloads)

Book Synopsis Deep Learning for Time Series Forecasting by : Jason Brownlee

Download or read book Deep Learning for Time Series Forecasting written by Jason Brownlee and published by Machine Learning Mastery. This book was released on 2018-08-30 with total page 572 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deep learning methods offer a lot of promise for time series forecasting, such as the automatic learning of temporal dependence and the automatic handling of temporal structures like trends and seasonality. With clear explanations, standard Python libraries, and step-by-step tutorial lessons you’ll discover how to develop deep learning models for your own time series forecasting projects.

Recurrent Neural Networks with Python Quick Start Guide

Recurrent Neural Networks with Python Quick Start Guide
Author :
Publisher : Packt Publishing Ltd
Total Pages : 115
Release :
ISBN-10 : 9781789133660
ISBN-13 : 1789133661
Rating : 4/5 (60 Downloads)

Book Synopsis Recurrent Neural Networks with Python Quick Start Guide by : Simeon Kostadinov

Download or read book Recurrent Neural Networks with Python Quick Start Guide written by Simeon Kostadinov and published by Packt Publishing Ltd. This book was released on 2018-11-30 with total page 115 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn how to develop intelligent applications with sequential learning and apply modern methods for language modeling with neural network architectures for deep learning with Python's most popular TensorFlow framework. Key FeaturesTrain and deploy Recurrent Neural Networks using the popular TensorFlow libraryApply long short-term memory unitsExpand your skills in complex neural network and deep learning topicsBook Description Developers struggle to find an easy-to-follow learning resource for implementing Recurrent Neural Network (RNN) models. RNNs are the state-of-the-art model in deep learning for dealing with sequential data. From language translation to generating captions for an image, RNNs are used to continuously improve results. This book will teach you the fundamentals of RNNs, with example applications in Python and the TensorFlow library. The examples are accompanied by the right combination of theoretical knowledge and real-world implementations of concepts to build a solid foundation of neural network modeling. Your journey starts with the simplest RNN model, where you can grasp the fundamentals. The book then builds on this by proposing more advanced and complex algorithms. We use them to explain how a typical state-of-the-art RNN model works. From generating text to building a language translator, we show how some of today's most powerful AI applications work under the hood. After reading the book, you will be confident with the fundamentals of RNNs, and be ready to pursue further study, along with developing skills in this exciting field. What you will learnUse TensorFlow to build RNN modelsUse the correct RNN architecture for a particular machine learning taskCollect and clear the training data for your modelsUse the correct Python libraries for any task during the building phase of your modelOptimize your model for higher accuracyIdentify the differences between multiple models and how you can substitute themLearn the core deep learning fundamentals applicable to any machine learning modelWho this book is for This book is for Machine Learning engineers and data scientists who want to learn about Recurrent Neural Network models with practical use-cases. Exposure to Python programming is required. Previous experience with TensorFlow will be helpful, but not mandatory.

Deep Learning for Natural Language Processing

Deep Learning for Natural Language Processing
Author :
Publisher : Apress
Total Pages : 290
Release :
ISBN-10 : 9781484236857
ISBN-13 : 1484236858
Rating : 4/5 (57 Downloads)

Book Synopsis Deep Learning for Natural Language Processing by : Palash Goyal

Download or read book Deep Learning for Natural Language Processing written by Palash Goyal and published by Apress. This book was released on 2018-06-26 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discover the concepts of deep learning used for natural language processing (NLP), with full-fledged examples of neural network models such as recurrent neural networks, long short-term memory networks, and sequence-2-sequence models. You’ll start by covering the mathematical prerequisites and the fundamentals of deep learning and NLP with practical examples. The first three chapters of the book cover the basics of NLP, starting with word-vector representation before moving onto advanced algorithms. The final chapters focus entirely on implementation, and deal with sophisticated architectures such as RNN, LSTM, and Seq2seq, using Python tools: TensorFlow, and Keras. Deep Learning for Natural Language Processing follows a progressive approach and combines all the knowledge you have gained to build a question-answer chatbot system. This book is a good starting point for people who want to get started in deep learning for NLP. All the code presented in the book will be available in the form of IPython notebooks and scripts, which allow you to try out the examples and extend them in interesting ways. What You Will Learn Gain the fundamentals of deep learning and its mathematical prerequisites Discover deep learning frameworks in Python Develop a chatbot Implement a research paper on sentiment classification Who This Book Is For Software developers who are curious to try out deep learning with NLP.

Neural Network Projects with Python

Neural Network Projects with Python
Author :
Publisher : Packt Publishing Ltd
Total Pages : 301
Release :
ISBN-10 : 9781789133318
ISBN-13 : 1789133319
Rating : 4/5 (18 Downloads)

Book Synopsis Neural Network Projects with Python by : James Loy

Download or read book Neural Network Projects with Python written by James Loy and published by Packt Publishing Ltd. This book was released on 2019-02-28 with total page 301 pages. Available in PDF, EPUB and Kindle. Book excerpt: Build your Machine Learning portfolio by creating 6 cutting-edge Artificial Intelligence projects using neural networks in Python Key FeaturesDiscover neural network architectures (like CNN and LSTM) that are driving recent advancements in AIBuild expert neural networks in Python using popular libraries such as KerasIncludes projects such as object detection, face identification, sentiment analysis, and moreBook Description Neural networks are at the core of recent AI advances, providing some of the best resolutions to many real-world problems, including image recognition, medical diagnosis, text analysis, and more. This book goes through some basic neural network and deep learning concepts, as well as some popular libraries in Python for implementing them. It contains practical demonstrations of neural networks in domains such as fare prediction, image classification, sentiment analysis, and more. In each case, the book provides a problem statement, the specific neural network architecture required to tackle that problem, the reasoning behind the algorithm used, and the associated Python code to implement the solution from scratch. In the process, you will gain hands-on experience with using popular Python libraries such as Keras to build and train your own neural networks from scratch. By the end of this book, you will have mastered the different neural network architectures and created cutting-edge AI projects in Python that will immediately strengthen your machine learning portfolio. What you will learnLearn various neural network architectures and its advancements in AIMaster deep learning in Python by building and training neural networkMaster neural networks for regression and classificationDiscover convolutional neural networks for image recognitionLearn sentiment analysis on textual data using Long Short-Term MemoryBuild and train a highly accurate facial recognition security systemWho this book is for This book is a perfect match for data scientists, machine learning engineers, and deep learning enthusiasts who wish to create practical neural network projects in Python. Readers should already have some basic knowledge of machine learning and neural networks.

Supervised Machine Learning for Text Analysis in R

Supervised Machine Learning for Text Analysis in R
Author :
Publisher : CRC Press
Total Pages : 402
Release :
ISBN-10 : 9781000461978
ISBN-13 : 1000461971
Rating : 4/5 (78 Downloads)

Book Synopsis Supervised Machine Learning for Text Analysis in R by : Emil Hvitfeldt

Download or read book Supervised Machine Learning for Text Analysis in R written by Emil Hvitfeldt and published by CRC Press. This book was released on 2021-10-22 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: Text data is important for many domains, from healthcare to marketing to the digital humanities, but specialized approaches are necessary to create features for machine learning from language. Supervised Machine Learning for Text Analysis in R explains how to preprocess text data for modeling, train models, and evaluate model performance using tools from the tidyverse and tidymodels ecosystem. Models like these can be used to make predictions for new observations, to understand what natural language features or characteristics contribute to differences in the output, and more. If you are already familiar with the basics of predictive modeling, use the comprehensive, detailed examples in this book to extend your skills to the domain of natural language processing. This book provides practical guidance and directly applicable knowledge for data scientists and analysts who want to integrate unstructured text data into their modeling pipelines. Learn how to use text data for both regression and classification tasks, and how to apply more straightforward algorithms like regularized regression or support vector machines as well as deep learning approaches. Natural language must be dramatically transformed to be ready for computation, so we explore typical text preprocessing and feature engineering steps like tokenization and word embeddings from the ground up. These steps influence model results in ways we can measure, both in terms of model metrics and other tangible consequences such as how fair or appropriate model results are.