Lie Group Actions in Complex Analysis

Lie Group Actions in Complex Analysis
Author :
Publisher : Springer Science & Business Media
Total Pages : 212
Release :
ISBN-10 : 9783322802675
ISBN-13 : 3322802671
Rating : 4/5 (75 Downloads)

Book Synopsis Lie Group Actions in Complex Analysis by : Dimitrij Akhiezer

Download or read book Lie Group Actions in Complex Analysis written by Dimitrij Akhiezer and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 212 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main topic of this book is the sudy of the interaction between two major subjects of modern mathematics, namely, the theory of Lie groups with its specific methods and ways of thinking on the one hand and complex analysis with all its analytic, algebraic and geometric aspects. More specifically, the author concentrates on the double role of Lie groups in complex analysis, namely, as groups of biholomorphic self-made of certain complex analytic objects on the one hand and as a special class of complex manifolds with an additional strong structure on the other hand. The book starts from the basics of this subject and introduces the reader into many fields of recent research.

An Introduction to Lie Groups and Lie Algebras

An Introduction to Lie Groups and Lie Algebras
Author :
Publisher : Cambridge University Press
Total Pages : 237
Release :
ISBN-10 : 9780521889698
ISBN-13 : 0521889693
Rating : 4/5 (98 Downloads)

Book Synopsis An Introduction to Lie Groups and Lie Algebras by : Alexander A. Kirillov

Download or read book An Introduction to Lie Groups and Lie Algebras written by Alexander A. Kirillov and published by Cambridge University Press. This book was released on 2008-07-31 with total page 237 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an introduction to semisimple Lie algebras. It is concise and informal, with numerous exercises and examples.

Symmetries in Complex Analysis

Symmetries in Complex Analysis
Author :
Publisher : American Mathematical Soc.
Total Pages : 242
Release :
ISBN-10 : 9780821844595
ISBN-13 : 0821844598
Rating : 4/5 (95 Downloads)

Book Synopsis Symmetries in Complex Analysis by : Bruce Gilligan

Download or read book Symmetries in Complex Analysis written by Bruce Gilligan and published by American Mathematical Soc.. This book was released on 2008 with total page 242 pages. Available in PDF, EPUB and Kindle. Book excerpt: "The theme of this volume concerns interactions between group actions and problems in complex analysis." "The first four articles deal with such topics as representation kernels in representation theory, complex automorphisms and holomorphic equivalence of domains, and geometric description of exceptional symmetric domains. The last article is devoted to Seiberg-Witten equations and Taubes correspondence on symplectic 4-manifolds."--BOOK JACKET.

Analysis on Lie Groups with Polynomial Growth

Analysis on Lie Groups with Polynomial Growth
Author :
Publisher : Springer Science & Business Media
Total Pages : 315
Release :
ISBN-10 : 9781461220626
ISBN-13 : 1461220629
Rating : 4/5 (26 Downloads)

Book Synopsis Analysis on Lie Groups with Polynomial Growth by : Nick Dungey

Download or read book Analysis on Lie Groups with Polynomial Growth written by Nick Dungey and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 315 pages. Available in PDF, EPUB and Kindle. Book excerpt: Analysis on Lie Groups with Polynomial Growth is the first book to present a method for examining the surprising connection between invariant differential operators and almost periodic operators on a suitable nilpotent Lie group. It deals with the theory of second-order, right invariant, elliptic operators on a large class of manifolds: Lie groups with polynomial growth. In systematically developing the analytic and algebraic background on Lie groups with polynomial growth, it is possible to describe the large time behavior for the semigroup generated by a complex second-order operator with the aid of homogenization theory and to present an asymptotic expansion. Further, the text goes beyond the classical homogenization theory by converting an analytical problem into an algebraic one. This work is aimed at graduate students as well as researchers in the above areas. Prerequisites include knowledge of basic results from semigroup theory and Lie group theory.

Applications of Lie Groups to Differential Equations

Applications of Lie Groups to Differential Equations
Author :
Publisher : Springer Science & Business Media
Total Pages : 524
Release :
ISBN-10 : 9781468402742
ISBN-13 : 1468402749
Rating : 4/5 (42 Downloads)

Book Synopsis Applications of Lie Groups to Differential Equations by : Peter J. Olver

Download or read book Applications of Lie Groups to Differential Equations written by Peter J. Olver and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 524 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is devoted to explaining a wide range of applications of con tinuous symmetry groups to physically important systems of differential equations. Emphasis is placed on significant applications of group-theoretic methods, organized so that the applied reader can readily learn the basic computational techniques required for genuine physical problems. The first chapter collects together (but does not prove) those aspects of Lie group theory which are of importance to differential equations. Applications covered in the body of the book include calculation of symmetry groups of differential equations, integration of ordinary differential equations, including special techniques for Euler-Lagrange equations or Hamiltonian systems, differential invariants and construction of equations with pre scribed symmetry groups, group-invariant solutions of partial differential equations, dimensional analysis, and the connections between conservation laws and symmetry groups. Generalizations of the basic symmetry group concept, and applications to conservation laws, integrability conditions, completely integrable systems and soliton equations, and bi-Hamiltonian systems are covered in detail. The exposition is reasonably self-contained, and supplemented by numerous examples of direct physical importance, chosen from classical mechanics, fluid mechanics, elasticity and other applied areas.

Matrix Groups

Matrix Groups
Author :
Publisher : Springer Science & Business Media
Total Pages : 332
Release :
ISBN-10 : 9781447101833
ISBN-13 : 1447101839
Rating : 4/5 (33 Downloads)

Book Synopsis Matrix Groups by : Andrew Baker

Download or read book Matrix Groups written by Andrew Baker and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 332 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a first taste of the theory of Lie groups, focusing mainly on matrix groups: closed subgroups of real and complex general linear groups. The first part studies examples and describes classical families of simply connected compact groups. The second section introduces the idea of a lie group and explores the associated notion of a homogeneous space using orbits of smooth actions. The emphasis throughout is on accessibility.

Lie Groups

Lie Groups
Author :
Publisher : Springer Science & Business Media
Total Pages : 352
Release :
ISBN-10 : 9783642569364
ISBN-13 : 3642569366
Rating : 4/5 (64 Downloads)

Book Synopsis Lie Groups by : J.J. Duistermaat

Download or read book Lie Groups written by J.J. Duistermaat and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: This (post) graduate text gives a broad introduction to Lie groups and algebras with an emphasis on differential geometrical methods. It analyzes the structure of compact Lie groups in terms of the action of the group on itself by conjugation, culminating in the classification of the representations of compact Lie groups and their realization as sections of holomorphic line bundles over flag manifolds. Appendices provide background reviews.