Kernel Methods in Computer Vision

Kernel Methods in Computer Vision
Author :
Publisher : Now Publishers Inc
Total Pages : 113
Release :
ISBN-10 : 9781601982681
ISBN-13 : 1601982682
Rating : 4/5 (81 Downloads)

Book Synopsis Kernel Methods in Computer Vision by : Christoph H. Lampert

Download or read book Kernel Methods in Computer Vision written by Christoph H. Lampert and published by Now Publishers Inc. This book was released on 2009 with total page 113 pages. Available in PDF, EPUB and Kindle. Book excerpt: Few developments have influenced the field of computer vision in the last decade more than the introduction of statistical machine learning techniques. Particularly kernel-based classifiers, such as the support vector machine, have become indispensable tools, providing a unified framework for solving a wide range of image-related prediction tasks, including face recognition, object detection and action classification. By emphasizing the geometric intuition that all kernel methods rely on, Kernel Methods in Computer Vision provides an introduction to kernel-based machine learning techniques accessible to a wide audience including students, researchers and practitioners alike, without sacrificing mathematical correctness. It covers not only support vector machines but also less known techniques for kernel-based regression, outlier detection, clustering and dimensionality reduction. Additionally, it offers an outlook on recent developments in kernel methods that have not yet made it into the regular textbooks: structured prediction, dependency estimation and learning of the kernel function. Each topic is illustrated with examples of successful application in the computer vision literature, making Kernel Methods in Computer Vision a useful guide not only for those wanting to understand the working principles of kernel methods, but also for anyone wanting to apply them to real-life problems.

Kernel Methods and Machine Learning

Kernel Methods and Machine Learning
Author :
Publisher : Cambridge University Press
Total Pages : 617
Release :
ISBN-10 : 9781139867634
ISBN-13 : 1139867636
Rating : 4/5 (34 Downloads)

Book Synopsis Kernel Methods and Machine Learning by : S. Y. Kung

Download or read book Kernel Methods and Machine Learning written by S. Y. Kung and published by Cambridge University Press. This book was released on 2014-04-17 with total page 617 pages. Available in PDF, EPUB and Kindle. Book excerpt: Offering a fundamental basis in kernel-based learning theory, this book covers both statistical and algebraic principles. It provides over 30 major theorems for kernel-based supervised and unsupervised learning models. The first of the theorems establishes a condition, arguably necessary and sufficient, for the kernelization of learning models. In addition, several other theorems are devoted to proving mathematical equivalence between seemingly unrelated models. With over 25 closed-form and iterative algorithms, the book provides a step-by-step guide to algorithmic procedures and analysing which factors to consider in tackling a given problem, enabling readers to improve specifically designed learning algorithms, build models for new applications and develop efficient techniques suitable for green machine learning technologies. Numerous real-world examples and over 200 problems, several of which are Matlab-based simulation exercises, make this an essential resource for graduate students and professionals in computer science, electrical and biomedical engineering. Solutions to problems are provided online for instructors.

Kernel Methods for Pattern Analysis

Kernel Methods for Pattern Analysis
Author :
Publisher : Cambridge University Press
Total Pages : 520
Release :
ISBN-10 : 0521813972
ISBN-13 : 9780521813976
Rating : 4/5 (72 Downloads)

Book Synopsis Kernel Methods for Pattern Analysis by : John Shawe-Taylor

Download or read book Kernel Methods for Pattern Analysis written by John Shawe-Taylor and published by Cambridge University Press. This book was released on 2004-06-28 with total page 520 pages. Available in PDF, EPUB and Kindle. Book excerpt: Publisher Description

Kernel Methods in Bioengineering, Signal and Image Processing

Kernel Methods in Bioengineering, Signal and Image Processing
Author :
Publisher : IGI Global
Total Pages : 431
Release :
ISBN-10 : 9781599040424
ISBN-13 : 1599040425
Rating : 4/5 (24 Downloads)

Book Synopsis Kernel Methods in Bioengineering, Signal and Image Processing by : Gustavo Camps-Valls

Download or read book Kernel Methods in Bioengineering, Signal and Image Processing written by Gustavo Camps-Valls and published by IGI Global. This book was released on 2007-01-01 with total page 431 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book presents an extensive introduction to the field of kernel methods and real world applications. The book is organized in four parts: the first is an introductory chapter providing a framework of kernel methods; the others address Bioegineering, Signal Processing and Communications and Image Processing"--Provided by publisher.

Learning Kernel Classifiers

Learning Kernel Classifiers
Author :
Publisher : MIT Press
Total Pages : 402
Release :
ISBN-10 : 0262263041
ISBN-13 : 9780262263047
Rating : 4/5 (41 Downloads)

Book Synopsis Learning Kernel Classifiers by : Ralf Herbrich

Download or read book Learning Kernel Classifiers written by Ralf Herbrich and published by MIT Press. This book was released on 2001-12-07 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: An overview of the theory and application of kernel classification methods. Linear classifiers in kernel spaces have emerged as a major topic within the field of machine learning. The kernel technique takes the linear classifier—a limited, but well-established and comprehensively studied model—and extends its applicability to a wide range of nonlinear pattern-recognition tasks such as natural language processing, machine vision, and biological sequence analysis. This book provides the first comprehensive overview of both the theory and algorithms of kernel classifiers, including the most recent developments. It begins by describing the major algorithmic advances: kernel perceptron learning, kernel Fisher discriminants, support vector machines, relevance vector machines, Gaussian processes, and Bayes point machines. Then follows a detailed introduction to learning theory, including VC and PAC-Bayesian theory, data-dependent structural risk minimization, and compression bounds. Throughout, the book emphasizes the interaction between theory and algorithms: how learning algorithms work and why. The book includes many examples, complete pseudo code of the algorithms presented, and an extensive source code library.

Kernels for Structured Data

Kernels for Structured Data
Author :
Publisher : World Scientific
Total Pages : 216
Release :
ISBN-10 : 9789812814555
ISBN-13 : 9812814558
Rating : 4/5 (55 Downloads)

Book Synopsis Kernels for Structured Data by : Thomas G„rtner

Download or read book Kernels for Structured Data written by Thomas G„rtner and published by World Scientific. This book was released on 2008 with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a unique treatment of an important area of machine learning and answers the question of how kernel methods can be applied to structured data. Kernel methods are a class of state-of-the-art learning algorithms that exhibit excellent learning results in several application domains. Originally, kernel methods were developed with data in mind that can easily be embedded in a Euclidean vector space. Much real-world data does not have this property but is inherently structured. An example of such data, often consulted in the book, is the (2D) graph structure of molecules formed by their atoms and bonds. The book guides the reader from the basics of kernel methods to advanced algorithms and kernel design for structured data. It is thus useful for readers who seek an entry point into the field as well as experienced researchers.

Computer Vision -- ECCV 2014

Computer Vision -- ECCV 2014
Author :
Publisher : Springer
Total Pages : 632
Release :
ISBN-10 : 3319105833
ISBN-13 : 9783319105833
Rating : 4/5 (33 Downloads)

Book Synopsis Computer Vision -- ECCV 2014 by : David Fleet

Download or read book Computer Vision -- ECCV 2014 written by David Fleet and published by Springer. This book was released on 2014-09-22 with total page 632 pages. Available in PDF, EPUB and Kindle. Book excerpt: The seven-volume set comprising LNCS volumes 8689-8695 constitutes the refereed proceedings of the 13th European Conference on Computer Vision, ECCV 2014, held in Zurich, Switzerland, in September 2014. The 363 revised papers presented were carefully reviewed and selected from 1444 submissions. The papers are organized in topical sections on tracking and activity recognition; recognition; learning and inference; structure from motion and feature matching; computational photography and low-level vision; vision; segmentation and saliency; context and 3D scenes; motion and 3D scene analysis; and poster sessions.