Introduction to Uncertainty Quantification

Introduction to Uncertainty Quantification
Author :
Publisher : Springer
Total Pages : 351
Release :
ISBN-10 : 9783319233956
ISBN-13 : 3319233955
Rating : 4/5 (56 Downloads)

Book Synopsis Introduction to Uncertainty Quantification by : T.J. Sullivan

Download or read book Introduction to Uncertainty Quantification written by T.J. Sullivan and published by Springer. This book was released on 2015-12-14 with total page 351 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text provides a framework in which the main objectives of the field of uncertainty quantification (UQ) are defined and an overview of the range of mathematical methods by which they can be achieved. Complete with exercises throughout, the book will equip readers with both theoretical understanding and practical experience of the key mathematical and algorithmic tools underlying the treatment of uncertainty in modern applied mathematics. Students and readers alike are encouraged to apply the mathematical methods discussed in this book to their own favorite problems to understand their strengths and weaknesses, also making the text suitable for a self-study. Uncertainty quantification is a topic of increasing practical importance at the intersection of applied mathematics, statistics, computation and numerous application areas in science and engineering. This text is designed as an introduction to UQ for senior undergraduate and graduate students with a mathematical or statistical background and also for researchers from the mathematical sciences or from applications areas who are interested in the field. T. J. Sullivan was Warwick Zeeman Lecturer at the Mathematics Institute of the University of Warwick, United Kingdom, from 2012 to 2015. Since 2015, he is Junior Professor of Applied Mathematics at the Free University of Berlin, Germany, with specialism in Uncertainty and Risk Quantification.

An Introduction to Data Analysis and Uncertainty Quantification for Inverse Problems

An Introduction to Data Analysis and Uncertainty Quantification for Inverse Problems
Author :
Publisher : SIAM
Total Pages : 275
Release :
ISBN-10 : 9781611974911
ISBN-13 : 1611974917
Rating : 4/5 (11 Downloads)

Book Synopsis An Introduction to Data Analysis and Uncertainty Quantification for Inverse Problems by : Luis Tenorio

Download or read book An Introduction to Data Analysis and Uncertainty Quantification for Inverse Problems written by Luis Tenorio and published by SIAM. This book was released on 2017-07-06 with total page 275 pages. Available in PDF, EPUB and Kindle. Book excerpt: Inverse problems are found in many applications, such as medical imaging, engineering, astronomy, and geophysics, among others. To solve an inverse problem is to recover an object from noisy, usually indirect observations. Solutions to inverse problems are subject to many potential sources of error introduced by approximate mathematical models, regularization methods, numerical approximations for efficient computations, noisy data, and limitations in the number of observations; thus it is important to include an assessment of the uncertainties as part of the solution. Such assessment is interdisciplinary by nature, as it requires, in addition to knowledge of the particular application, methods from applied mathematics, probability, and statistics. This book bridges applied mathematics and statistics by providing a basic introduction to probability and statistics for uncertainty quantification in the context of inverse problems, as well as an introduction to statistical regularization of inverse problems. The author covers basic statistical inference, introduces the framework of ill-posed inverse problems, and explains statistical questions that arise in their applications. An Introduction to Data Analysis and Uncertainty Quantification for Inverse Problems?includes many examples that explain techniques which are useful to address general problems arising in uncertainty quantification, Bayesian and non-Bayesian statistical methods and discussions of their complementary roles, and analysis of a real data set to illustrate the methodology covered throughout the book.

Uncertainty Quantification

Uncertainty Quantification
Author :
Publisher : SIAM
Total Pages : 400
Release :
ISBN-10 : 9781611973211
ISBN-13 : 161197321X
Rating : 4/5 (11 Downloads)

Book Synopsis Uncertainty Quantification by : Ralph C. Smith

Download or read book Uncertainty Quantification written by Ralph C. Smith and published by SIAM. This book was released on 2013-12-02 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: The field of uncertainty quantification is evolving rapidly because of increasing emphasis on models that require quantified uncertainties for large-scale applications, novel algorithm development, and new computational architectures that facilitate implementation of these algorithms. Uncertainty Quantification: Theory, Implementation, and Applications provides readers with the basic concepts, theory, and algorithms necessary to quantify input and response uncertainties for simulation models arising in a broad range of disciplines. The book begins with a detailed discussion of applications where uncertainty quantification is critical for both scientific understanding and policy. It then covers concepts from probability and statistics, parameter selection techniques, frequentist and Bayesian model calibration, propagation of uncertainties, quantification of model discrepancy, surrogate model construction, and local and global sensitivity analysis. The author maintains a complementary web page where readers can find data used in the exercises and other supplementary material.

Handbook of Uncertainty Quantification

Handbook of Uncertainty Quantification
Author :
Publisher : Springer
Total Pages : 0
Release :
ISBN-10 : 331912384X
ISBN-13 : 9783319123844
Rating : 4/5 (4X Downloads)

Book Synopsis Handbook of Uncertainty Quantification by : Roger Ghanem

Download or read book Handbook of Uncertainty Quantification written by Roger Ghanem and published by Springer. This book was released on 2016-05-08 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The topic of Uncertainty Quantification (UQ) has witnessed massive developments in response to the promise of achieving risk mitigation through scientific prediction. It has led to the integration of ideas from mathematics, statistics and engineering being used to lend credence to predictive assessments of risk but also to design actions (by engineers, scientists and investors) that are consistent with risk aversion. The objective of this Handbook is to facilitate the dissemination of the forefront of UQ ideas to their audiences. We recognize that these audiences are varied, with interests ranging from theory to application, and from research to development and even execution.

Uncertainty Quantification and Predictive Computational Science

Uncertainty Quantification and Predictive Computational Science
Author :
Publisher : Springer
Total Pages : 349
Release :
ISBN-10 : 9783319995250
ISBN-13 : 3319995251
Rating : 4/5 (50 Downloads)

Book Synopsis Uncertainty Quantification and Predictive Computational Science by : Ryan G. McClarren

Download or read book Uncertainty Quantification and Predictive Computational Science written by Ryan G. McClarren and published by Springer. This book was released on 2018-11-23 with total page 349 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook teaches the essential background and skills for understanding and quantifying uncertainties in a computational simulation, and for predicting the behavior of a system under those uncertainties. It addresses a critical knowledge gap in the widespread adoption of simulation in high-consequence decision-making throughout the engineering and physical sciences. Constructing sophisticated techniques for prediction from basic building blocks, the book first reviews the fundamentals that underpin later topics of the book including probability, sampling, and Bayesian statistics. Part II focuses on applying Local Sensitivity Analysis to apportion uncertainty in the model outputs to sources of uncertainty in its inputs. Part III demonstrates techniques for quantifying the impact of parametric uncertainties on a problem, specifically how input uncertainties affect outputs. The final section covers techniques for applying uncertainty quantification to make predictions under uncertainty, including treatment of epistemic uncertainties. It presents the theory and practice of predicting the behavior of a system based on the aggregation of data from simulation, theory, and experiment. The text focuses on simulations based on the solution of systems of partial differential equations and includes in-depth coverage of Monte Carlo methods, basic design of computer experiments, as well as regularized statistical techniques. Code references, in python, appear throughout the text and online as executable code, enabling readers to perform the analysis under discussion. Worked examples from realistic, model problems help readers understand the mechanics of applying the methods. Each chapter ends with several assignable problems. Uncertainty Quantification and Predictive Computational Science fills the growing need for a classroom text for senior undergraduate and early-career graduate students in the engineering and physical sciences and supports independent study by researchers and professionals who must include uncertainty quantification and predictive science in the simulations they develop and/or perform.

Uncertainty in Engineering

Uncertainty in Engineering
Author :
Publisher : Springer Nature
Total Pages : 148
Release :
ISBN-10 : 9783030836405
ISBN-13 : 3030836401
Rating : 4/5 (05 Downloads)

Book Synopsis Uncertainty in Engineering by : Louis J. M. Aslett

Download or read book Uncertainty in Engineering written by Louis J. M. Aslett and published by Springer Nature. This book was released on 2022 with total page 148 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book provides an introduction to uncertainty quantification in engineering. Starting with preliminaries on Bayesian statistics and Monte Carlo methods, followed by material on imprecise probabilities, it then focuses on reliability theory and simulation methods for complex systems. The final two chapters discuss various aspects of aerospace engineering, considering stochastic model updating from an imprecise Bayesian perspective, and uncertainty quantification for aerospace flight modelling. Written by experts in the subject, and based on lectures given at the Second Training School of the European Research and Training Network UTOPIAE (Uncertainty Treatment and Optimization in Aerospace Engineering), which took place at Durham University (United Kingdom) from 2 to 6 July 2018, the book offers an essential resource for students as well as scientists and practitioners.

Uncertainty Quantification

Uncertainty Quantification
Author :
Publisher : Springer
Total Pages : 344
Release :
ISBN-10 : 9783319543390
ISBN-13 : 3319543393
Rating : 4/5 (90 Downloads)

Book Synopsis Uncertainty Quantification by : Christian Soize

Download or read book Uncertainty Quantification written by Christian Soize and published by Springer. This book was released on 2017-04-24 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the fundamental notions and advanced mathematical tools in the stochastic modeling of uncertainties and their quantification for large-scale computational models in sciences and engineering. In particular, it focuses in parametric uncertainties, and non-parametric uncertainties with applications from the structural dynamics and vibroacoustics of complex mechanical systems, from micromechanics and multiscale mechanics of heterogeneous materials. Resulting from a course developed by the author, the book begins with a description of the fundamental mathematical tools of probability and statistics that are directly useful for uncertainty quantification. It proceeds with a well carried out description of some basic and advanced methods for constructing stochastic models of uncertainties, paying particular attention to the problem of calibrating and identifying a stochastic model of uncertainty when experimental data is available. This book is intended to be a graduate-level textbook for students as well as professionals interested in the theory, computation, and applications of risk and prediction in science and engineering fields.