Stochastic Control Theory

Stochastic Control Theory
Author :
Publisher : Springer
Total Pages : 263
Release :
ISBN-10 : 9784431551232
ISBN-13 : 4431551239
Rating : 4/5 (32 Downloads)

Book Synopsis Stochastic Control Theory by : Makiko Nisio

Download or read book Stochastic Control Theory written by Makiko Nisio and published by Springer. This book was released on 2014-11-27 with total page 263 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a systematic introduction to the optimal stochastic control theory via the dynamic programming principle, which is a powerful tool to analyze control problems. First we consider completely observable control problems with finite horizons. Using a time discretization we construct a nonlinear semigroup related to the dynamic programming principle (DPP), whose generator provides the Hamilton–Jacobi–Bellman (HJB) equation, and we characterize the value function via the nonlinear semigroup, besides the viscosity solution theory. When we control not only the dynamics of a system but also the terminal time of its evolution, control-stopping problems arise. This problem is treated in the same frameworks, via the nonlinear semigroup. Its results are applicable to the American option price problem. Zero-sum two-player time-homogeneous stochastic differential games and viscosity solutions of the Isaacs equations arising from such games are studied via a nonlinear semigroup related to DPP (the min-max principle, to be precise). Using semi-discretization arguments, we construct the nonlinear semigroups whose generators provide lower and upper Isaacs equations. Concerning partially observable control problems, we refer to stochastic parabolic equations driven by colored Wiener noises, in particular, the Zakai equation. The existence and uniqueness of solutions and regularities as well as Itô's formula are stated. A control problem for the Zakai equations has a nonlinear semigroup whose generator provides the HJB equation on a Banach space. The value function turns out to be a unique viscosity solution for the HJB equation under mild conditions. This edition provides a more generalized treatment of the topic than does the earlier book Lectures on Stochastic Control Theory (ISI Lecture Notes 9), where time-homogeneous cases are dealt with. Here, for finite time-horizon control problems, DPP was formulated as a one-parameter nonlinear semigroup, whose generator provides the HJB equation, by using a time-discretization method. The semigroup corresponds to the value function and is characterized as the envelope of Markovian transition semigroups of responses for constant control processes. Besides finite time-horizon controls, the book discusses control-stopping problems in the same frameworks.

Optimal and Robust Estimation

Optimal and Robust Estimation
Author :
Publisher : CRC Press
Total Pages : 546
Release :
ISBN-10 : 9781420008296
ISBN-13 : 1420008293
Rating : 4/5 (96 Downloads)

Book Synopsis Optimal and Robust Estimation by : Frank L. Lewis

Download or read book Optimal and Robust Estimation written by Frank L. Lewis and published by CRC Press. This book was released on 2017-12-19 with total page 546 pages. Available in PDF, EPUB and Kindle. Book excerpt: More than a decade ago, world-renowned control systems authority Frank L. Lewis introduced what would become a standard textbook on estimation, under the title Optimal Estimation, used in top universities throughout the world. The time has come for a new edition of this classic text, and Lewis enlisted the aid of two accomplished experts to bring the book completely up to date with the estimation methods driving today's high-performance systems. A Classic Revisited Optimal and Robust Estimation: With an Introduction to Stochastic Control Theory, Second Edition reflects new developments in estimation theory and design techniques. As the title suggests, the major feature of this edition is the inclusion of robust methods. Three new chapters cover the robust Kalman filter, H-infinity filtering, and H-infinity filtering of discrete-time systems. Modern Tools for Tomorrow's Engineers This text overflows with examples that highlight practical applications of the theory and concepts. Design algorithms appear conveniently in tables, allowing students quick reference, easy implementation into software, and intuitive comparisons for selecting the best algorithm for a given application. In addition, downloadable MATLAB® code allows students to gain hands-on experience with industry-standard software tools for a wide variety of applications. This cutting-edge and highly interactive text makes teaching, and learning, estimation methods easier and more modern than ever.

Introduction to Stochastic Control Theory

Introduction to Stochastic Control Theory
Author :
Publisher : Courier Corporation
Total Pages : 322
Release :
ISBN-10 : 9780486445311
ISBN-13 : 0486445313
Rating : 4/5 (11 Downloads)

Book Synopsis Introduction to Stochastic Control Theory by : Karl J. Åström

Download or read book Introduction to Stochastic Control Theory written by Karl J. Åström and published by Courier Corporation. This book was released on 2006-01-06 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unabridged republication of the edition published by Academic Press, 1970.

Stochastic Control in Discrete and Continuous Time

Stochastic Control in Discrete and Continuous Time
Author :
Publisher : Springer Science & Business Media
Total Pages : 299
Release :
ISBN-10 : 9780387766164
ISBN-13 : 0387766162
Rating : 4/5 (64 Downloads)

Book Synopsis Stochastic Control in Discrete and Continuous Time by : Atle Seierstad

Download or read book Stochastic Control in Discrete and Continuous Time written by Atle Seierstad and published by Springer Science & Business Media. This book was released on 2008-11-11 with total page 299 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains an introduction to three topics in stochastic control: discrete time stochastic control, i. e. , stochastic dynamic programming (Chapter 1), piecewise - terministic control problems (Chapter 3), and control of Ito diffusions (Chapter 4). The chapters include treatments of optimal stopping problems. An Appendix - calls material from elementary probability theory and gives heuristic explanations of certain more advanced tools in probability theory. The book will hopefully be of interest to students in several ?elds: economics, engineering, operations research, ?nance, business, mathematics. In economics and business administration, graduate students should readily be able to read it, and the mathematical level can be suitable for advanced undergraduates in mathem- ics and science. The prerequisites for reading the book are only a calculus course and a course in elementary probability. (Certain technical comments may demand a slightly better background. ) As this book perhaps (and hopefully) will be read by readers with widely diff- ing backgrounds, some general advice may be useful: Don’t be put off if paragraphs, comments, or remarks contain material of a seemingly more technical nature that you don’t understand. Just skip such material and continue reading, it will surely not be needed in order to understand the main ideas and results. The presentation avoids the use of measure theory.

Stochastic Optimal Control in Infinite Dimension

Stochastic Optimal Control in Infinite Dimension
Author :
Publisher : Springer
Total Pages : 928
Release :
ISBN-10 : 9783319530673
ISBN-13 : 3319530674
Rating : 4/5 (73 Downloads)

Book Synopsis Stochastic Optimal Control in Infinite Dimension by : Giorgio Fabbri

Download or read book Stochastic Optimal Control in Infinite Dimension written by Giorgio Fabbri and published by Springer. This book was released on 2017-06-22 with total page 928 pages. Available in PDF, EPUB and Kindle. Book excerpt: Providing an introduction to stochastic optimal control in infinite dimension, this book gives a complete account of the theory of second-order HJB equations in infinite-dimensional Hilbert spaces, focusing on its applicability to associated stochastic optimal control problems. It features a general introduction to optimal stochastic control, including basic results (e.g. the dynamic programming principle) with proofs, and provides examples of applications. A complete and up-to-date exposition of the existing theory of viscosity solutions and regular solutions of second-order HJB equations in Hilbert spaces is given, together with an extensive survey of other methods, with a full bibliography. In particular, Chapter 6, written by M. Fuhrman and G. Tessitore, surveys the theory of regular solutions of HJB equations arising in infinite-dimensional stochastic control, via BSDEs. The book is of interest to both pure and applied researchers working in the control theory of stochastic PDEs, and in PDEs in infinite dimension. Readers from other fields who want to learn the basic theory will also find it useful. The prerequisites are: standard functional analysis, the theory of semigroups of operators and its use in the study of PDEs, some knowledge of the dynamic programming approach to stochastic optimal control problems in finite dimension, and the basics of stochastic analysis and stochastic equations in infinite-dimensional spaces.

Stochastic Controls

Stochastic Controls
Author :
Publisher : Springer Science & Business Media
Total Pages : 459
Release :
ISBN-10 : 9781461214663
ISBN-13 : 1461214661
Rating : 4/5 (63 Downloads)

Book Synopsis Stochastic Controls by : Jiongmin Yong

Download or read book Stochastic Controls written by Jiongmin Yong and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 459 pages. Available in PDF, EPUB and Kindle. Book excerpt: As is well known, Pontryagin's maximum principle and Bellman's dynamic programming are the two principal and most commonly used approaches in solving stochastic optimal control problems. * An interesting phenomenon one can observe from the literature is that these two approaches have been developed separately and independently. Since both methods are used to investigate the same problems, a natural question one will ask is the fol lowing: (Q) What is the relationship betwccn the maximum principlc and dy namic programming in stochastic optimal controls? There did exist some researches (prior to the 1980s) on the relationship between these two. Nevertheless, the results usually werestated in heuristic terms and proved under rather restrictive assumptions, which were not satisfied in most cases. In the statement of a Pontryagin-type maximum principle there is an adjoint equation, which is an ordinary differential equation (ODE) in the (finite-dimensional) deterministic case and a stochastic differential equation (SDE) in the stochastic case. The system consisting of the adjoint equa tion, the original state equation, and the maximum condition is referred to as an (extended) Hamiltonian system. On the other hand, in Bellman's dynamic programming, there is a partial differential equation (PDE), of first order in the (finite-dimensional) deterministic case and of second or der in the stochastic case. This is known as a Hamilton-Jacobi-Bellman (HJB) equation.

Stochastic Linear-Quadratic Optimal Control Theory: Open-Loop and Closed-Loop Solutions

Stochastic Linear-Quadratic Optimal Control Theory: Open-Loop and Closed-Loop Solutions
Author :
Publisher : Springer Nature
Total Pages : 129
Release :
ISBN-10 : 9783030209223
ISBN-13 : 3030209229
Rating : 4/5 (23 Downloads)

Book Synopsis Stochastic Linear-Quadratic Optimal Control Theory: Open-Loop and Closed-Loop Solutions by : Jingrui Sun

Download or read book Stochastic Linear-Quadratic Optimal Control Theory: Open-Loop and Closed-Loop Solutions written by Jingrui Sun and published by Springer Nature. This book was released on 2020-06-29 with total page 129 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gathers the most essential results, including recent ones, on linear-quadratic optimal control problems, which represent an important aspect of stochastic control. It presents the results in the context of finite and infinite horizon problems, and discusses a number of new and interesting issues. Further, it precisely identifies, for the first time, the interconnections between three well-known, relevant issues – the existence of optimal controls, solvability of the optimality system, and solvability of the associated Riccati equation. Although the content is largely self-contained, readers should have a basic grasp of linear algebra, functional analysis and stochastic ordinary differential equations. The book is mainly intended for senior undergraduate and graduate students majoring in applied mathematics who are interested in stochastic control theory. However, it will also appeal to researchers in other related areas, such as engineering, management, finance/economics and the social sciences.