Introduction to Matrix Theory

Introduction to Matrix Theory
Author :
Publisher : Springer Nature
Total Pages : 199
Release :
ISBN-10 : 9783030804817
ISBN-13 : 303080481X
Rating : 4/5 (17 Downloads)

Book Synopsis Introduction to Matrix Theory by : Arindama Singh

Download or read book Introduction to Matrix Theory written by Arindama Singh and published by Springer Nature. This book was released on 2021-08-16 with total page 199 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is designed to serve as a textbook for courses offered to undergraduate and postgraduate students enrolled in Mathematics. Using elementary row operations and Gram-Schmidt orthogonalization as basic tools the text develops characterization of equivalence and similarity, and various factorizations such as rank factorization, OR-factorization, Schurtriangularization, Diagonalization of normal matrices, Jordan decomposition, singular value decomposition, and polar decomposition. Along with Gauss-Jordan elimination for linear systems, it also discusses best approximations and least-squares solutions. The book includes norms on matrices as a means to deal with iterative solutions of linear systems and exponential of a matrix. The topics in the book are dealt with in a lively manner. Each section of the book has exercises to reinforce the concepts, and problems have been added at the end of each chapter. Most of these problems are theoretical, and they do not fit into the running text linearly. The detailed coverage and pedagogical tools make this an ideal textbook for students and researchers enrolled in senior undergraduate and beginning postgraduate mathematics courses.

Introduction to Matrix Analysis and Applications

Introduction to Matrix Analysis and Applications
Author :
Publisher : Springer Science & Business Media
Total Pages : 337
Release :
ISBN-10 : 9783319041506
ISBN-13 : 3319041509
Rating : 4/5 (06 Downloads)

Book Synopsis Introduction to Matrix Analysis and Applications by : Fumio Hiai

Download or read book Introduction to Matrix Analysis and Applications written by Fumio Hiai and published by Springer Science & Business Media. This book was released on 2014-02-06 with total page 337 pages. Available in PDF, EPUB and Kindle. Book excerpt: Matrices can be studied in different ways. They are a linear algebraic structure and have a topological/analytical aspect (for example, the normed space of matrices) and they also carry an order structure that is induced by positive semidefinite matrices. The interplay of these closely related structures is an essential feature of matrix analysis. This book explains these aspects of matrix analysis from a functional analysis point of view. After an introduction to matrices and functional analysis, it covers more advanced topics such as matrix monotone functions, matrix means, majorization and entropies. Several applications to quantum information are also included. Introduction to Matrix Analysis and Applications is appropriate for an advanced graduate course on matrix analysis, particularly aimed at studying quantum information. It can also be used as a reference for researchers in quantum information, statistics, engineering and economics.

Introduction to Random Matrices

Introduction to Random Matrices
Author :
Publisher : Springer
Total Pages : 122
Release :
ISBN-10 : 9783319708850
ISBN-13 : 3319708856
Rating : 4/5 (50 Downloads)

Book Synopsis Introduction to Random Matrices by : Giacomo Livan

Download or read book Introduction to Random Matrices written by Giacomo Livan and published by Springer. This book was released on 2018-01-16 with total page 122 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modern developments of Random Matrix Theory as well as pedagogical approaches to the standard core of the discipline are surprisingly hard to find in a well-organized, readable and user-friendly fashion. This slim and agile book, written in a pedagogical and hands-on style, without sacrificing formal rigor fills this gap. It brings Ph.D. students in Physics, as well as more senior practitioners, through the standard tools and results on random matrices, with an eye on most recent developments that are not usually covered in introductory texts. The focus is mainly on random matrices with real spectrum.The main guiding threads throughout the book are the Gaussian Ensembles. In particular, Wigner’s semicircle law is derived multiple times to illustrate several techniques (e.g., Coulomb gas approach, replica theory).Most chapters are accompanied by Matlab codes (stored in an online repository) to guide readers through the numerical check of most analytical results.

Introduction to Modern Algebra and Matrix Theory

Introduction to Modern Algebra and Matrix Theory
Author :
Publisher : Courier Corporation
Total Pages : 402
Release :
ISBN-10 : 9780486482200
ISBN-13 : 0486482200
Rating : 4/5 (00 Downloads)

Book Synopsis Introduction to Modern Algebra and Matrix Theory by : Otto Schreier

Download or read book Introduction to Modern Algebra and Matrix Theory written by Otto Schreier and published by Courier Corporation. This book was released on 2011-01-01 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This unique text provides students with a basic course in both calculus and analytic geometry. It promotes an intuitive approach to calculus and emphasizes algebraic concepts. Minimal prerequisites. Numerous exercises. 1951 edition"--

Matrix Theory

Matrix Theory
Author :
Publisher : Springer Science & Business Media
Total Pages : 290
Release :
ISBN-10 : 9781475757972
ISBN-13 : 1475757972
Rating : 4/5 (72 Downloads)

Book Synopsis Matrix Theory by : Fuzhen Zhang

Download or read book Matrix Theory written by Fuzhen Zhang and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume concisely presents fundamental ideas, results, and techniques in linear algebra and mainly matrix theory. Each chapter focuses on the results, techniques, and methods that are beautiful, interesting, and representative, followed by carefully selected problems. For many theorems several different proofs are given. The only prerequisites are a decent background in elementary linear algebra and calculus.

Matrix Theory

Matrix Theory
Author :
Publisher : Courier Corporation
Total Pages : 319
Release :
ISBN-10 : 9780486136387
ISBN-13 : 0486136388
Rating : 4/5 (87 Downloads)

Book Synopsis Matrix Theory by : Joel N. Franklin

Download or read book Matrix Theory written by Joel N. Franklin and published by Courier Corporation. This book was released on 2012-07-31 with total page 319 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematically rigorous introduction covers vector and matrix norms, the condition-number of a matrix, positive and irreducible matrices, much more. Only elementary algebra and calculus required. Includes problem-solving exercises. 1968 edition.

Linear Algebra and Matrix Theory

Linear Algebra and Matrix Theory
Author :
Publisher : Courier Corporation
Total Pages : 290
Release :
ISBN-10 : 9780486623184
ISBN-13 : 0486623181
Rating : 4/5 (84 Downloads)

Book Synopsis Linear Algebra and Matrix Theory by : Robert R. Stoll

Download or read book Linear Algebra and Matrix Theory written by Robert R. Stoll and published by Courier Corporation. This book was released on 2012-10-17 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advanced undergraduate and first-year graduate students have long regarded this text as one of the best available works on matrix theory in the context of modern algebra. Teachers and students will find it particularly suited to bridging the gap between ordinary undergraduate mathematics and completely abstract mathematics. The first five chapters treat topics important to economics, psychology, statistics, physics, and mathematics. Subjects include equivalence relations for matrixes, postulational approaches to determinants, and bilinear, quadratic, and Hermitian forms in their natural settings. The final chapters apply chiefly to students of engineering, physics, and advanced mathematics. They explore groups and rings, canonical forms for matrixes with respect to similarity via representations of linear transformations, and unitary and Euclidean vector spaces. Numerous examples appear throughout the text.