Intelligent Techniques for Data Science

Intelligent Techniques for Data Science
Author :
Publisher : Springer
Total Pages : 282
Release :
ISBN-10 : 9783319292069
ISBN-13 : 3319292064
Rating : 4/5 (69 Downloads)

Book Synopsis Intelligent Techniques for Data Science by : Rajendra Akerkar

Download or read book Intelligent Techniques for Data Science written by Rajendra Akerkar and published by Springer. This book was released on 2016-10-11 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook provides readers with the tools, techniques and cases required to excel with modern artificial intelligence methods. These embrace the family of neural networks, fuzzy systems and evolutionary computing in addition to other fields within machine learning, and will help in identifying, visualizing, classifying and analyzing data to support business decisions./p> The authors, discuss advantages and drawbacks of different approaches, and present a sound foundation for the reader to design and implement data analytic solutions for real‐world applications in an intelligent manner. Intelligent Techniques for Data Science also provides real-world cases of extracting value from data in various domains such as retail, health, aviation, telecommunication and tourism.

Data Science

Data Science
Author :
Publisher : CRC Press
Total Pages : 323
Release :
ISBN-10 : 9781000613421
ISBN-13 : 1000613429
Rating : 4/5 (21 Downloads)

Book Synopsis Data Science by : Pallavi Vijay Chavan

Download or read book Data Science written by Pallavi Vijay Chavan and published by CRC Press. This book was released on 2022-08-15 with total page 323 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers the topic of data science in a comprehensive manner and synthesizes both fundamental and advanced topics of a research area that has now reached its maturity. The book starts with the basic concepts of data science. It highlights the types of data and their use and importance, followed by a discussion on a wide range of applications of data science and widely used techniques in data science. Key Features • Provides an internationally respected collection of scientific research methods, technologies and applications in the area of data science. • Presents predictive outcomes by applying data science techniques to real-life applications. • Provides readers with the tools, techniques and cases required to excel with modern artificial intelligence methods. • Gives the reader a variety of intelligent applications that can be designed using data science and its allied fields. The book is aimed primarily at advanced undergraduates and graduates studying machine learning and data science. Researchers and professionals will also find this book useful.

Big Data Analytics and Intelligent Techniques for Smart Cities

Big Data Analytics and Intelligent Techniques for Smart Cities
Author :
Publisher : CRC Press
Total Pages : 297
Release :
ISBN-10 : 9781000413311
ISBN-13 : 1000413314
Rating : 4/5 (11 Downloads)

Book Synopsis Big Data Analytics and Intelligent Techniques for Smart Cities by : Kolla Bhanu Prakash

Download or read book Big Data Analytics and Intelligent Techniques for Smart Cities written by Kolla Bhanu Prakash and published by CRC Press. This book was released on 2021-09-20 with total page 297 pages. Available in PDF, EPUB and Kindle. Book excerpt: Big Data Analytics and Intelligent Techniques for Smart Cities covers fundamentals, advanced concepts, and applications of big data analytics for smart cities in a single volume. This comprehensive reference text discusses big data theory modeling and simulation for smart cities and examines case studies in a single volume. The text discusses how to develop a smart city and state-of-the-art system design, system verification, real-time control and adaptation, Internet of Things, and testbeds. It covers applications of smart cities as they relate to smart transportation/connected vehicle (CV) and intelligent transportation systems (ITS) for improved mobility, safety, and environmental protection. It will be useful as a reference text for graduate students in different areas including electrical engineering, computer science engineering, civil engineering, and electronics and communications engineering. Features: Technologies and algorithms associated with the application of big data for smart cities Discussions on big data theory modeling and simulation for smart cities Applications of smart cities as they relate to smart transportation and intelligent transportation systems (ITS) Discussions on concepts including smart education, smart culture, and smart transformation management for social and societal changes

Intelligent Data Analysis

Intelligent Data Analysis
Author :
Publisher : Springer
Total Pages : 515
Release :
ISBN-10 : 9783540486251
ISBN-13 : 3540486259
Rating : 4/5 (51 Downloads)

Book Synopsis Intelligent Data Analysis by : Michael R. Berthold

Download or read book Intelligent Data Analysis written by Michael R. Berthold and published by Springer. This book was released on 2007-06-07 with total page 515 pages. Available in PDF, EPUB and Kindle. Book excerpt: This second and revised edition contains a detailed introduction to the key classes of intelligent data analysis methods. The twelve coherently written chapters by leading experts provide complete coverage of the core issues. The first half of the book is devoted to the discussion of classical statistical issues. The following chapters concentrate on machine learning and artificial intelligence, rule induction methods, neural networks, fuzzy logic, and stochastic search methods. The book concludes with a chapter on visualization and an advanced overview of IDA processes.

Guide to Intelligent Data Science

Guide to Intelligent Data Science
Author :
Publisher : Springer Nature
Total Pages : 427
Release :
ISBN-10 : 9783030455743
ISBN-13 : 3030455742
Rating : 4/5 (43 Downloads)

Book Synopsis Guide to Intelligent Data Science by : Michael R. Berthold

Download or read book Guide to Intelligent Data Science written by Michael R. Berthold and published by Springer Nature. This book was released on 2020-08-06 with total page 427 pages. Available in PDF, EPUB and Kindle. Book excerpt: Making use of data is not anymore a niche project but central to almost every project. With access to massive compute resources and vast amounts of data, it seems at least in principle possible to solve any problem. However, successful data science projects result from the intelligent application of: human intuition in combination with computational power; sound background knowledge with computer-aided modelling; and critical reflection of the obtained insights and results. Substantially updating the previous edition, then entitled Guide to Intelligent Data Analysis, this core textbook continues to provide a hands-on instructional approach to many data science techniques, and explains how these are used to solve real world problems. The work balances the practical aspects of applying and using data science techniques with the theoretical and algorithmic underpinnings from mathematics and statistics. Major updates on techniques and subject coverage (including deep learning) are included. Topics and features: guides the reader through the process of data science, following the interdependent steps of project understanding, data understanding, data blending and transformation, modeling, as well as deployment and monitoring; includes numerous examples using the open source KNIME Analytics Platform, together with an introductory appendix; provides a review of the basics of classical statistics that support and justify many data analysis methods, and a glossary of statistical terms; integrates illustrations and case-study-style examples to support pedagogical exposition; supplies further tools and information at an associated website. This practical and systematic textbook/reference is a “need-to-have” tool for graduate and advanced undergraduate students and essential reading for all professionals who face data science problems. Moreover, it is a “need to use, need to keep” resource following one's exploration of the subject.

Intelligent Techniques and Applications in Science and Technology

Intelligent Techniques and Applications in Science and Technology
Author :
Publisher : Springer Nature
Total Pages : 1126
Release :
ISBN-10 : 9783030423636
ISBN-13 : 3030423638
Rating : 4/5 (36 Downloads)

Book Synopsis Intelligent Techniques and Applications in Science and Technology by : Subhojit Dawn

Download or read book Intelligent Techniques and Applications in Science and Technology written by Subhojit Dawn and published by Springer Nature. This book was released on 2020-03-02 with total page 1126 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides innovative ideas on achieving sustainable development and using green technologies to conserve our ecosystem. Innovation is the successful exploitation of a new idea. Through innovation, we can achieve MORE while using LESS. Innovations in science & technology will not only help mankind as a whole, but also contribute to the economic growth of individual countries. It is essential that the global problem of environmental degradation be addressed immediately, and thus, we need to rethink the concept of sustainable development. Indeed, new environmentally friendly technologies are fundamental to attaining sustainable development. The book shares a wealth of innovative green technological ideas on how to preserve and improve the quality of the environment, and how to establish a more resource-efficient and sustainable society. The book provides an interdisciplinary approach to addressing various technical issues and capitalizing on advances in computing & optimization for scientific & technological development, smart information, communication, bio-monitoring, smart cities, food quality assessment, waste management, environmental aspects, alternative energies, sustainable infrastructure development, etc. In short, it offers valuable information and insights for budding engineers, researchers, upcoming young minds and industry professionals, promoting awareness for recent advances in the various fields mentioned above.

Data Smart

Data Smart
Author :
Publisher : John Wiley & Sons
Total Pages : 432
Release :
ISBN-10 : 9781118839867
ISBN-13 : 1118839862
Rating : 4/5 (67 Downloads)

Book Synopsis Data Smart by : John W. Foreman

Download or read book Data Smart written by John W. Foreman and published by John Wiley & Sons. This book was released on 2013-10-31 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data Science gets thrown around in the press like it'smagic. Major retailers are predicting everything from when theircustomers are pregnant to when they want a new pair of ChuckTaylors. It's a brave new world where seemingly meaningless datacan be transformed into valuable insight to drive smart businessdecisions. But how does one exactly do data science? Do you have to hireone of these priests of the dark arts, the "data scientist," toextract this gold from your data? Nope. Data science is little more than using straight-forward steps toprocess raw data into actionable insight. And in DataSmart, author and data scientist John Foreman will show you howthat's done within the familiar environment of aspreadsheet. Why a spreadsheet? It's comfortable! You get to look at the dataevery step of the way, building confidence as you learn the tricksof the trade. Plus, spreadsheets are a vendor-neutral place tolearn data science without the hype. But don't let the Excel sheets fool you. This is a book forthose serious about learning the analytic techniques, the math andthe magic, behind big data. Each chapter will cover a different technique in aspreadsheet so you can follow along: Mathematical optimization, including non-linear programming andgenetic algorithms Clustering via k-means, spherical k-means, and graphmodularity Data mining in graphs, such as outlier detection Supervised AI through logistic regression, ensemble models, andbag-of-words models Forecasting, seasonal adjustments, and prediction intervalsthrough monte carlo simulation Moving from spreadsheets into the R programming language You get your hands dirty as you work alongside John through eachtechnique. But never fear, the topics are readily applicable andthe author laces humor throughout. You'll even learnwhat a dead squirrel has to do with optimization modeling, whichyou no doubt are dying to know.